Bootstrapping Form Factors via Integrability and Cluster Algebras

Alexander Tumanov, ENS Paris

Varna, 14.08.24

[Basso, Dixon, AT to appear later this month] [Sever, AT, Wilhelm '20 - '21] [Basso, AT '23]

[Caron-Huot, Dixon, Drummond, Dulat, Foster, Gürdogan, von Hippel, McLeod, Papathanasiou '20]

Cluster algebra part is based on:

Based on:

[Golden, Goncharov, Spradlin, Vergu, Volovich '13]

general kinematics

Recent results (2011-2024)

Amp = Amplitude, FF = Form Factor MHV = Maximally Helicity Violating, NMHV = Next to MHV

 $F_{\mathcal{O}}(k_1,\ldots,k_n)=\langle k_1,\ldots,k_n|\mathcal{O}(q)|0\rangle$

Recent results (2011-2024)

- ✓ **= results obtained by traditional methods**
- ✓ **= perturbative bootstrap results**

Amp = Amplitude, FF = Form Factor MHV = Maximally Helicity Violating, NMHV = Next to MHV

 $F_{\mathcal{O}}(k_1,\ldots,k_n)=\langle k_1,\ldots,k_n|\mathcal{O}(q)|0\rangle$

Recent results (2011-2024)

- ✓ **= results obtained by traditional methods**
- ✓ **= perturbative bootstrap results**

= [Basso, Dixon, AT to appear this month]

= [Dixon, McLeod, Wilhelm '20], [Dixon, Gurdogan, McLeod, Wilhelm '22]

Amp = Amplitude, FF = Form Factor MHV = Maximally Helicity Violating, NMHV = Next to MHV

 $F_{\mathcal{O}}(k_1,\ldots,k_n)=\langle k_1,\ldots,k_n|\mathcal{O}(q)|0\rangle$

This space of functions can be turned into a simple vector space by using the **symbol map**.

The entries of the symbol a_i are called letters. Collection of all the letters is called the alphabet.

Symbol

Amplitudes and form factors with small number of external legs live in the space of **generalized polylogarithms**.

Constraining the symbol

In this talk, I will talk about two specific three-point form factors, which both have the same symbol alphabet:

$$
\mathcal{L}_a=\{a,b,c,d,e,f\}=\{\frac{u}{vw},\frac{v}{wu},\frac{w}{uv},\frac{1-u}{u},\frac{1-v}{v},\frac{1-w}{w}\}
$$

where
$$
u = \frac{s_{12}}{q^2}
$$
, $v = \frac{s_{23}}{q^2}$, $w = \frac{s_{31}}{q^2}$, $u +$

 $n=3$ form factors have two kinematic degrees of freedom. At L loops the ansatz has 6^{2L} terms.

 $v + w = 1$, g is the momentum carried by the operator

Constraining the symbol

In this talk, I will talk about two specific three-point form factors, which both have the same symbol alphabet:

$$
\mathcal{L}_a=\{a,b,c,d,e,f\}=\{\frac{u}{vw},\frac{v}{wu},\frac{w}{uv},\frac{1-u}{u},\frac{1-v}{v},\frac{1-w}{w}\}
$$

where
$$
u = \frac{s_{12}}{q^2}
$$
, $v = \frac{s_{23}}{q^2}$, $w = \frac{s_{31}}{q^2}$, $u +$

 $n=3$ form factors have two kinematic degrees of freedom. At L loops the ansatz has 6^{2L} terms.

 $v + w = 1$, g is the momentum carried by the operator

Relation to cluster algebras

n-point amplitude is described by the $Gr(4, n)$ cluster algebra.

Plücker coordinates on $Gr(4, n)$: $\langle i~j~k~l\rangle = \text{Det}\{Z_i, Z_j, Z_k, Z_l\}$ (dual conformal invariant invariants)

Twistor space *Gr*(4, *n*)

Relation to cluster algebras

Gr(4, *n*) cluster algebras

$$
x_i \to \begin{cases} \frac{1}{x_i} & \text{if mutated on } i\\ x_i \left(1 + x_k^{-\text{sign}\{b_{ik}\}}\right)^{-b_{ik}} & \text{if mutated on } k \neq i \end{cases}
$$

6pt two-loop MHV amplitude:

$$
R_6^{(2)} = \sum_{\text{cyclic}} \text{Li}_4\left(-\frac{\langle 1234\rangle \langle 2356\rangle}{\langle 1236\rangle \langle 2345\rangle}\right) - \frac{1}{4} \text{Li}_4\left(-\frac{\langle 1246\rangle \langle 1345\rangle}{\langle 1234\rangle \langle 1456\rangle}\right)
$$

+ (products of lower-transcendentality polylogs with the same arguments)

x-variables = cross ratios of a -variables

Definition:
$$
x_i = \frac{\prod\limits_{j \to i} a_j}{\prod\limits_{i \to j} a_j}
$$

Mutation rule:

Mutation rule:	$a_i \rightarrow \frac{\prod\limits_{i \rightarrow j} a_j + \prod\limits_{j \rightarrow i} a_j}{a_i}$
----------------	---

Plücker coordinates = cluster variables

Relation to cluster algebras

Two cluster variables are non-adjacent if they never occur in the same cluster

Cluster non-adjacency = Steinmann relations

For the form factors, we don't have the cluster algebra yet, but we do have the Steinmann relations!

Amplitude function spaces are determined by the *Gr*(4, *n*) cluster algebras

Cluster x -variables = Arguments of polylogarithms

Basis of cluster x -variables = Symbol alphabet

Intermediate results

$$
\left(\text{Tr}\,\phi^2\right)
$$

Integrability

 $=$ $=$

Form Factor — Wilson loop duality for $\text{Tr }\phi^2$

At one loop, corrections arise from dressing the Wilson loop with gluon exchanges between edges:

$$
W_{2,n} = 1 + g^2 \sum_{i < j} \cdots \sum_{i < j} \text{cososososy} + \mathcal{O}\left(g^4\right)
$$
\nnumber of particles

Form Factor — Wilson loop duality for $Tr \phi^3$

To compensate for the charge at the infinity, the Wilson loop needs to be "charged" accordingly. [Caron-Huot '10]

$$
W_{3,n} = \sum_{i} \bigwedge_{\longrightarrow} \left(\bigvee_{i+1} \bigwedge_{\dots} \right)^{i} + \mathcal{O}\left(g^{2}\right)
$$

In the general case of Tr ϕ^k , the asymptotic state consists of $k-2$ zero-momentum scalars.

m = 2 **amplituhedron** Similar to [Caron-Huot, Coronado, Muhlmann '23]

This result is nothing but a triangulation of a polygon:

These 3-brackets are 2D versions of the standard R-invariant $[ijklm]=\frac{\delta^{0|4}\left(\langle[ijkl\rangle\eta_{m]}\right)}{\langle ijkl\rangle\langle jklm\rangle\langle klmi\rangle\langle lmij\rangle\langle mijk\rangle}$

$$
W^{\textrm{tree}}_{3,n} = \sum_{i=1}^n \bigwedge \bigwedge_{i+1} \bigwedge \bigg\lvert \bigg\lvert_{i+1} = -\sum_{i=2}^{n-1} \left(1ii+1 \right) \quad \textrm{where} \quad \left(ijk \right) = \frac{\delta^{0|2}(\langle ij \rangle \eta^-_k + \langle jk \rangle \eta^-_i + \langle ki \rangle \eta^-_j)}{\langle ij \rangle \langle jk \rangle \langle ki \rangle}
$$

Wilson Loop OPE & Form Factor OPE

[Alday, Gaiotto, Maldacena, Sever, Vieira '11] [Sever, AT, Wilhelm '20]

 $\overline{\psi_i}$

Pentagon & form factor transitions

where
$$
a_i = \phi, \psi, \bar{\psi}, F, \bar{F}, DF, DF, DF, \bar{D}F, \bar{D}F, \bar{D}F
$$
,
\n
$$
\begin{bmatrix}\n\text{Pentagon transition } P(\psi_i|\psi_j) \\
\vdots \\
\psi_i\n\end{bmatrix}
$$
\n[ϕ_i]\n[ϕ_i]\n[<

$$
|\psi\rangle = |\{a_1, u_1\}, \ldots, \{a_n, u_n\}\rangle
$$

 D^2F, \ldots

States can be thought of as field insertions on the edges of the Wilson loop. They are characterized by the number of particles, their species, and rapidity (momentum):

Other types of constraints

Mirror transformation ($u \to u^{\gamma} = u + i$) shifts an excitation to the neighbouring edge. If after a certain number

of these the object goes back to itself, it's crossing symmetric.

$$
F(u_1^{2\gamma},\ldots,u_\ell)=F(u_2,\ldots,u_\ell,u_1)
$$

Main building block [for scalar excitations]

$$
\mathbb{K}_{ij} = 2j(-1)^{ij+j} \int_{0}^{\infty} \frac{dt}{t} \frac{J_i(2gt)J_j(2gt)}{e^t - 1} \qquad 0
$$

$$
\mathbb{K}(\alpha) = 2\cos(\alpha) \begin{pmatrix} \cos(\alpha)\mathbb{K}_{\infty} & \sin(\alpha)\mathbb{K}_{\infty} \\ \sin(\alpha)\mathbb{K}_{\bullet\infty} & \cos(\alpha)\mathbb{K}_{\bullet\bullet} \end{pmatrix}
$$

[Beisert, Eden, Staudacher '07] [Basso, Dixon, Papathansiou '20]

The transitions are built by defining the phase factors:

$$
\frac{1}{1 + \mathbb{K}(\alpha)} \tilde{\kappa}_{\alpha}^{v} - \tilde{\kappa}_{\alpha}^{u} \mathbb{Q} \frac{1}{1 + \mathbb{K}(\alpha)} \kappa_{\alpha}^{v}
$$
\n
$$
\frac{1}{1 + \mathbb{K}(\alpha)} \kappa_{\alpha}^{v} = \tilde{\kappa}_{\alpha}^{u} \mathbb{Q} \frac{1}{1 + \mathbb{K}(\alpha)} \tilde{\kappa}_{\alpha}^{v}
$$
\nfixed functions

\n
$$
\exp \left[J_{\phi}(u) + J_{\phi}(-v) + i f_{a}^{[\pi/4]}(u, v) + f_{s}^{[\alpha]}(u, v) \right]
$$
\nform factor

\n
$$
u|v) \quad Q_{\phi\phi}(u|v) = P_{\phi\phi}^{[0]}(u|v)
$$

Back to bootstrapping: imposing the constraints

Antipodal duality

[Dixon, Gurdogan, McLeod, Wilhelm '21]

[Dixon, Gurdogan, Liu, McLeod, Wilhelm '22]

Conclusions

2) Three- and four-loop form factors of ${\rm Tr}\,\phi^2$ and ${\rm Tr}\,\phi^3$ can now be bootstrapped through high-loop orders.

3) We have constructed new types of OPE building blocks that corresponding to tilted BES kernels.

Thank you!

Form factors of 1/2−**BPS operators**

The simplest class of local operators $\mathcal{N}=4$ SYM are the [protected] 1/2-BPS operators.

(for $k=2$ it contains the chiral Lagrangian)

Without any loss of generality we may simply fix *A*, *B*. From now on these indexes will be omitted.

$Tr \phi^3$ one-loop check

We also tested this duality at one loop. Two types of diagrams need to be considered:

Because the operator is protected, diagrams of the second kind add up to zero. The diagrams of the first kind add up perfectly to the expected result.

Leading Born-level Form factor transitions

Tr ϕ^2 The leading contribution comes from the vacuum state, the subleading comes from the singlet states:

The results:

$$
F_{F\bar{F}}(u,v) = -1 \times \frac{2}{g^2} \left(u^2 + \frac{1}{4}\right) \cosh(\pi u) \delta(u-v)
$$

$$
F_{\psi\bar{\psi}}(u,v) = +4 \times \frac{2}{g^2} u \sinh(\pi u) \delta(u-v)
$$

$$
F_{\phi\bar{\phi}}(u,v) = -6 \times \frac{4}{g^2(u-v-2i)(u-v-i)} \frac{\Gamma(iu-iv)}{\Gamma(\frac{1}{2}+iu)\Gamma(\frac{1}{2}-iv)}
$$

$$
= \int d\sigma_1 d\sigma_2 \Psi_{X\bar{X}}(\sigma_1, \sigma_2 | u_1, u_2)
$$
 (propagator between $x(\sigma_2)$ and $x^{[+]}(\sigma_1)$)

σ_1 and σ_2 parametrize the locations of the insertions

Leading Born-level Form factor transitions

Tr ϕ^k The leading contribution comes from $k-2$ identical scalars:

$$
F^{(0)}_{\text{Tr}\,\phi^k}(\{\phi,u_1\},\ldots,\{\phi,u_{k-2}\})=
$$

The results:

$$
F_{\phi}(u)=1
$$

$$
F_{\phi\phi}(u,v) = g^2 \frac{\Gamma(\frac{1}{2} - iu)\Gamma(\frac{1}{2} + iv)}{\Gamma(iv - iu)}
$$