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Fomin and Zelevinsky

Cluster Algebras were conceived by Sergey Fomin and Andrey Zelevinsky
at MIT and Northeastern about 25 years ago.

The above are three photos of Zelevinsky and Fomin giving the first
lectures on Cluster Algebras.

They were awarded the 2018 Leroy P. Steele Prize of the American
Mathematical Society, for seminar contribution to research.
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Cluster Algebras: general picture
[Fomin-Zelevinsky 2000] A cluster algebra is a commutative algebra A,
generated by (in general ∞ many) polynomial subalgebras of the same
dimension, related by mutation:

C[x ′1, x2, x3, x4, . . . , xN ] C[x1, x
′
2, x3, x4, . . . , xN ]

C[x1, x2, x3, x4, . . . , xN ]

C[x1, x2, x
′
3, x4, . . . , xN ] C[x1, x2, x3, x

′
4, . . . , xN ]

Mutation:

x ′k =
monomial1 + monomial2

xk

Frozen variables: xm+1, . . . , xN .
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Example

Example. The space of 2× 2 matrices. Its polynomial algebra
C[x11, x12, x21, x22] has a cluster structure with two clusters:

C[x11, x12, x21,∆] C[x22, x12, x21,∆]

where ∆ = x11x22 − x12x21. Mutation:

x22 =
x12x21 + ∆

x11
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Quiver mutation

Start with a quiver Q without loops and 2-cycles. For k = 1, . . . ,m,
define its mutation µk(Q) at the vertex k :

Step I: Reverse all arrows to and from the vertex k.

Step II: Complete

the 2-paths k

��
i

@@

j

to triangles k

��
i

@@

joo

Step III: Cancel out pairs of opposite arrows.
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An example: µ3(Q)

Q := 3

��
1

//// 2

^^ I (reverse arrows to/from 3): 3

��
1

@@

//// 2

II (2-paths through 3): 3

��
1

@@

//// 2oo

III: µ3(Q) = 3

��
1

@@

// 2
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Cluster and Upper Cluster Algebras

Σ := (x1, . . . , xN ;Q) (a seed).

The mutation of the seed at the index k is defined by

µk(Σ) = (x1, . . . , x
′
k , . . . , xN ;µk(Q)), x ′k :=

1

xk

(∏
j→k

xj +
∏
k→i

xi
)
.

Cluster Algebra: A(Q)=the subring of C(x1, . . . , xN) generated by all
cluster variables in all seeds obtained by iterations of mutations from Σ.

Upper Cluster Algebra: U(Q)=the subring of C(x1, . . . , xN) equal to⋂
seeds Σ

C[(x ′′1 )±1, . . . , (x ′′m)±1, xm+1, . . . , xN ].

Laurent Phenomenon [Fomin–Zelevinsky]: A(Q) ⊆ U(Q).
Important consequences if one can prove equality.
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Example: type A2

The simplest nontrivial cluster algebra is the one of type A2 without
frozen variables. It has 5 clusters:

C[x1, x2]

C[ 1+x2

x1
, x2]

C[ 1+x2

x1
, 1+x1+x2

x1x2
] C[ 1+x1+x2

x1x2
, 1+x1

x2
]

C[x1,
1+x1

x2
]
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Example: the Grassmannians Gr(2, d)
The homogeneous coordinate ring O(Gr(2, d)) is the algebra with
generators pij , 1 ≤ i < j ≤ d subject to the Plücker relations:

pikpj` = pijpk` + pi`pjk for 1 ≤ i < j < k < ` ≤ d .

Cluster algebra, seeds parametrized by the triangulations of the d-gon:
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Figure: A triangulation T of an octagon, the quiver Q(T ), and labeling of T .
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The GSV Poisson structures I
I (Q)= incidence matrix of Q of size N ×m.
Definition. The quiver Q and a skew-symmetric integer matrix
Λ ∈ MN(Z) are called compatible if

I (Q)>Λ =
[
D 0

]
,

where D is a diagonal matrix with nonzero diagonal entries.

Theorem [Gekhtman-Shapiro-Vainshtein]

Each upper cluster algebra U(Q) with a compatible matrix
Λ = (λjk) ∈ MN(Z) possesses a Poisson algebra structure such that

{xj , xk} = λjkxjxk , ∀1 ≤ j , k ≤ N.

For every cluster (x ′′1 , . . . , x
′′
N) of U(Q)

{x ′′j , x ′′k } = λ′′jkx
′′
j x
′′
k , ∀1 ≤ j , k ≤ N

for some λ′′jk ∈ Z.
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The GSV Poisson structures II

We get a Poisson structure π on the complex affine Poisson variety

Y (Q) := MaxSpecU(Q).

Vast classes of important complex affine Poisson varieties arise as special
cases

1 Schubert cells in flag varieties with so called standard Poisson
structures;

2 Double Bruhat cells, Bott–Samelson varieties for simple Lie groups
with the standard Poisson structures;

3 Simple Lie groups with Belavin-Drinfeld Poisson structures and
many others.
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Root of Unity Cluster Algebras I

Fix an integer ` ≥ 1 and a primitive `-th root of unity

ε1/2 ∈ C.

Choose a skew-symmetric matrix

Λ = (λij) ∈ MN(Z/`),

and consider the root of unity quantum torus

Tε,Λ :=
C〈y±1

1 , . . . , y±1
N 〉

(yjyk − ελij ykyj)
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Root of Unity Cluster Algebras II

We define the mutation µk(Σ) := (y1, . . . yk−1, y
′
k , yk+1, . . . , yN ;µk(Q))

where
y ′k := εn

′/2y−1
k

∏
j→k

yj + εn
′′/2y−1

k

∏
i→k

yi

same integers n′ and n′′. Compatibility between Λ and I (Q).

Definition of root of unity quantum cluster algebras

Define

The root of unity quantum cluster algebra Aε(Q):=
the C-subalgebra of Frac(Tε,Λ) generated by all cluster variables.

The root of unity upper quantum cluster algebra Uε(Q):=
the intersection in Tε,Λ of all mutated mixed quantum tori

C〈(y ′′1 )±1, . . . , (y ′′m)±1, ym+1, . . . , yN〉.
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Root of Unity Cluster Algebras III

Theorem. [Trampel-Nguyen-Y]

Aε(Q) ⊆ Uε(Q).

This is a vast class including many important subfamilies:

1 Lie theory: De Concini-Kac-Procesi quantum groups of various
nature Oε(G ), Oε(B+wB+/B+), . . .

2 Topology: Kauffman bracket skein algebras of oriented surfaces.

= ε + ε−1 = −(ε2 + ε−2)

The Kauffman skein relation The value of the unknot
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Canonical central subalgebras

Define the subalgebra of Uε(Q)

Cε(Q) :=
⋂

all seeds

C[(y ′′1 )±`, . . . , (y ′′m)±`, y `m+1, . . . , y
`
N ].

Theorem [Trampel-Nguyen-Y]

For all root of unity quantum cluster algebras Uε(Q) and `-th primitive
roots of unity ε1/2 such that ` is odd,

1 Cε(Q) is a central subalgebra of Uε(Q) and

2 Cε(Q) is isomorphic to the classical upper cluster algebra U(Q).
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(1)
1

Example

T-orbits of Symplectic Leaves

Example:
(
C2, π = (xy − 1) ∂∂x ∧

∂
∂y

)
with C×-action x 7→ tx , y 7→ t−1y :

x

y
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Torus Actions

Given
ν := (ν1, . . . , νN) ∈ Ker I (Q)>,

there is a C×-action on the upper cluster algebra U(Q) by Poisson
automorphisms, such that

ψν(t)(xj) = tνj xj , ∀t ∈ C×, 1 ≤ j ≤ N.

One packages the C×-actions into and action of the torus

T (Q) := (C×)dim Ker I (Q)> ,

on U(Q) by Poisson automorphisms.
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Main Theorem on the Poisson structures of CAs

Geometry of the GSV Poisson structures:

T (Q) y (Y (Q), π).

Theorem [Muller-Nguyen-Trampel-Y]

Let U(Q) be any finitely generated upper cluster algebra admitting a
compatible skew-symmetric matrix.

The GSV Poisson structure on Y (Q) always has a Zariski open (dense)
T (Q)-orbit of symplectic laves and it is explicitly given by

Y (Q)reg\V(xm+1 . . . xN).

Proof: Arguments with the anticanonical bundle of Y (Q)reg + normality.
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Analysis of Theorem

Tempting to conjecture:

The Poisson T (Q)-variety (Y (Q), π) always has finitely many
T (Q)-orbits of symplectic leaves.

But this is incorrect even if we require Y (Q) to be smooth:

The symplectic foliations of the Belavin-Drinfeld Poisson structures
were classified ([Y] 2001 PhD thesis under N. Reshetikhin) and this
property does not hold for them.

Gekhtman-Shapiro-Vainshtein constructed cluster algebra structures
on some of them.
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Affine A
(1)
1 Example I

Consider the A
(1)
1 cluster algebra for

I (Q) :=

[
0 −2
2 0

]
, Λ :=

[
0 1
−1 0

]
without frozen variables. Ker I (Q)T = {0}, so T (Q) is trivial.

Berenstein-Fomin-Zelevinsky gave the presentation

U(Q) = C[x1, x2, x
′
1, x
′
2]/(x1x

′
1 − x2

2 − 1, x2x
′
2 − x2

1 − 1).

There is a nicer presentation in terms of the following element

z := x ′1x
′
2 − x1x2 ∈ U(Q).

We have

Y (Q) = V(f ) ⊂ C3, where f (x1, x2, z) := x1x2z − (x2
1 + x2

2 + 1)

and one checks that Y (Q) is smooth.

Milen Yakimov Poisson Geometry and Representation Theory of Cluster Algebras



Cluster Algebras
Poisson geometry of CAs

Transfer of Finite Generation
Representation Theory

Example
Torus Actions
Main Thm on the Poisson geometry of CAs
Analysis of Theorem
Affine A

(1)
1

Example

Affine A
(1)
1 Example I

Consider the A
(1)
1 cluster algebra for

I (Q) :=

[
0 −2
2 0

]
, Λ :=

[
0 1
−1 0

]
without frozen variables. Ker I (Q)T = {0}, so T (Q) is trivial.
Berenstein-Fomin-Zelevinsky gave the presentation

U(Q) = C[x1, x2, x
′
1, x
′
2]/(x1x

′
1 − x2

2 − 1, x2x
′
2 − x2

1 − 1).

There is a nicer presentation in terms of the following element

z := x ′1x
′
2 − x1x2 ∈ U(Q).

We have

Y (Q) = V(f ) ⊂ C3, where f (x1, x2, z) := x1x2z − (x2
1 + x2

2 + 1)

and one checks that Y (Q) is smooth.
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The GSV Poisson structure is a Poisson structure with potential:

{x1, x2} := fz = x1x2,

{x2, z} := fx1 = x2z − 2x1,

{z , x1} := fx2 = −2x2 + x1z .

Our theorem gives that

(Y (Q), π) is a symplectic manifold,

i.e., the whole Y (Q) = MaxSpecU(Q) is a single symplectic leaf.
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The cross sections of Y (Q) with z = const give all conics through
(0,±i) and (±i , 0) except for the singular one x1x2 = 0,
classically known as pencil of conics:

z = −3 z = −1.5 z = 0 z = 1.5 z = 3

The red curves represent the imaginary parts of the cross sections
(conics) and the blue curves their real parts.
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The clusters of U(Q) are the pairs

(xn, xn+1), n ∈ Z

for xn recursively defined by

xn−1xn+1 = x2
n + 1.

The union of the cluster tori is

Y (Q)\{(0,±i , 0), (±i , 0, 0)}.

This is the “local part” that was previously understood.
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n + 1.
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This is the “local part” that was previously understood.
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Cayley–Hamilton algebras [Procesi]
Setting: A is an algebra with trace tr : A→ C for a central subalgebra
C : tr(za) = z tr(a) and tr(ab) = tr(ba) for all a, b ∈ A, z ∈ C .

Procesi: For an n × n-matrix Y , the coefficients of the characteristic
polynomial of Y are universal expressions in terms of

tr(Y ), . . . , tr(Y n).

In the setting of an algebra with trace, use the same expressions to define
the n-th characteristic polynomial of a ∈ A

χa,n(t) ∈ C [t] using tr(a), . . . , tr(an).

Definition [Procesi]

A Cayley-Hamilton algebra of degree n is an algebra A with trace
tr : A→ C such that

χa,n(a) = 0, ∀a ∈ A and tr(1) = n.
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Cayley-Hamilton Structures on Cluster Algebras

Theorem [Huang-Lê-Y]

Assume that the order ` of the root of unity ε1/2 is odd. Then:

1 The pair (Uε(Q),Cε(Q)) has a canonical structure of
Cayley-Hamilton algebra of degree `N .

2 The following are equivalent:

Uε(Q) is a finitely generated C-algebra.
Uε(Q) is a fin generated module over Cε(Q) and Cε(Q) ∼= U(Q) is
a finitely generated commutative C-algebra.

Corollary [Finite Generation Transfer]. Uε(Q) is a finitely generated
C-algebra ⇒ U(Q) is a finitely generated commutative C-algebra.
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Irreps of Noether Algebras
General picture [Artin, Kaplansky, Posner, Procesi,...]:
A is a (noncommutative) finitely generated C-algebra w/o zero divisors,
which is module-finite over a central subalgebra C ⊆ Z (A).

Irr(A)=irreps of A. Kaplansky Thm =⇒ all are fin dimensional. By
Schur’s lemma, we have the character map:

ψ : Irr(A)→ MaxSpec(C ), V 7→ AnnC (V ).

Problem. Describe he fibers of ψ, which are ψ−1(m) = Irr(A/mA).

m m′

Irr(A/mA) Irr(A/m′A)

MaxSpec(C )

[Brown-Gordon] Fully Azumaya locus of A with respect to C :=the open
subset of m ∈ MaxSpec(C ) such that all irreps in ψ−1(m) have max dim.
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Main Thm on Irreps of CAs

Theorem [Muller-Nguyen-Trampel-Y]

For all root of unity upper quantum cluster algebras Uε(Q) and `-th
primitive roots of unity ε1/2 such that

1 ` is odd

2 and Uε(Q) is a finitely generated algebra such that Uε(Q) = Aε(Q),

the fully Azumaya locus A ⊂ Y (Q) of Uε(Q) with respect to
Cε(Q) ∼= U(Q) satisfies

Y (Q)reg\V(xm+1 . . . xN) ⊆ A ⊆ Y (Q)\V(xm+1 . . . xN).

Milen Yakimov Poisson Geometry and Representation Theory of Cluster Algebras



Cluster Algebras
Poisson geometry of CAs

Transfer of Finite Generation
Representation Theory

Irreps of Noether Algebras
Main Thm on Irreps of CAs
Affine A

(1)
1

Example

Affine A
(1)
1 Example

Return to the acyclic cluster algebra for

I (Q) :=

[
0 −2
2 0

]
, Λ :=

[
0 1
−1 0

]
without frozen variables.
On the quantum level we have the presentation

Uε(Q) = C[x1, x2, x
′
1, x
′
2]/(x1x2 − εx2x1, x1x

′
1 − ε−1x2

2 − 1, x2x
′
2 − εx2

1 − 1).

Our second main theorem implies that all irreducible representations of
Uε(Q) have dimension ` and can be obtained in an explicit way from
representations of quantum tori.
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Thank you!
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