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The present thesis, submitted for obtaining the scientific degree “Doctor of Sciences”,
consists of introductory, main and reference parts. The short introductory part outlines
the place, the objectives and the significance of the research topics and the main results of
the thesis within the framework of contemporary theoretical physics. The main (proper)
part provides a systematic and detailed description of the contents and principal results in
the included full-text copies of author’s publications, which are an inseparable integral part
of the thesis. The latter represent 31 selected papers (out of the 92 works in the full list
of author’s scientific papers), with 599 independent citations (out of the 854 independent
citations of all author’s works) and with impact-factor 75.400 (out of the total impact-factor
165.730 of all author’s works).

The unifying theme of all included scientific papers are various non-perturbative aspects
of modern quantum gauge theories and of the related quantum theory of supersymmetric
strings under the following topical subdivision:

(a) Three-dimensional gauge theories – 1/N expansion, dynamical spontaneous break-
down of internal and discrete space-time symmetries, non-perturbative particle spectra,
phase transitions and critical behaviour. These topics include 9 papers [A1–A9] with 77
independent citations and impact-factor 8.944.

(b) Quantum anomalies – anomalous breaking of discrete space-time symmetries; sto-
chastic quantization – symmetries and their anomalous breakdown. These topics include 9
works [B1–B9] with 103 independent citations and impact-factor 21.384.

(c) Super-Poincare covariant quantization of supersymmetric strings; covariant off-shell
superspace formulation of super-gauge theories with extended supersymmetry. Here 13 pa-
pers [C1–C13] are included with 419 independent citations and impact-factor 45.072.

The concluding reference part contains the list of the principal scientific contributions
in the thesis, the list of the selected included author’s papers, citation and impact-factor
indices.
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1 Objectives and Significance of the Main Results

Throughout the last few decays the concept about grand unification of all fundamental
interactions at ultra-high energies occupies a central place in modern theory of elementary
particles [1] (for the current string theory perspective, a.k.a. “string phenomenology” or
“string-inspired model building”, see e.g. [2]). The principal idea of the grand unification is
to describe via minimal number of fundamental parameters the whole multitude of physical
laws of the microscopic world:

(i) All the initial large gauge symmetries of the fundamental particle interactions at
(ultra-)high energies and the patterns of their dynamical breakings at lower energy scales
down to the observable gauge symmetry of the standard model at energy scale Λ0 ' 100
GeV.

(ii) Dependence of the structure and strength of the particle interactions on the energy
scales - effective coupling constants.

(iii) Non-trivial and varying structure of the pertinent physical ground states (the vacu-
ums), i.e., the different phases of the quantum field systems and the relevant phase transi-
tions among them conceptually similar to the phases and the phase transition phenomena
in condensed matter systems.

(iv) Understanding of the mechanisms for formation of the particle spectra – parti-
cle masses, charges and their (possible) composite structure, “confinement” and “decon-
finement” phenomena, coherent excitations of the fundamental fields - solitons (magnentic
monopoles, vortices, strings etc).

At low (with respect to the string theory scale) energies the realistic models of elementary
particles are described by D = 4 quantum gauge field theories which do not allow for exact
solutions (henceforth dimensionality of space-time will be denoted by D). The standard
method of their treatment is the “naive” perturbation theory with respect to the coupling
constants gi entering the interacting part of the corresponding Langrangian:

L = −1

2
Φ∗K(∂x)Φ +

∑
i

giLi(Φ) (1)

Here Φ is a collective notation for the set of fields with different spins and internal degrees
of freedom; K(∂x) is the kinetic differential operator (of second or first order); Li(Φ) contain
various interaction terms of degrees higher than 2. The naive perturbation theory approach
in quantum field theory has several serious drawbacks:

(a) The requirement for renormalizability of the model (1) imposes strong restrictions on
the allowed form of Li(Φ), in particular, the coupling constants gi must be either dimension-
less or with a positive mass dimension.

(b) Because of the renormalization of the pertinent ultraviolet divergences, the renor-
malized coupling constants generically depend on the renormalization mass scale Λ – gren

i =
gren

i (Λ). This fact in many cases constitutes a significant obstacle, e.g., in quantum chromo-
dynamics where the effective coupling grows in the infrared regimes and renders ordinary
perturbation theory meaningless.

(c) Obviously, naive perturbation theory is incapable to describe most quantum field
theory phenomena inherent to the grand unification picture outlined above ((i)–(iv)) which
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are intrinsically non-perturbative, e.g. confinement/deconfinement, phenomena involving
coherent excitations (solitons), whose masses are of the order of 1/gi [3] etc.

A contribution toward the non-perturbative treatment of quantum gauge theories is con-
tained in authors papers [A1–A9] which constitute the first part of the thesis. Here we study
in great detail the properties of D = 3 quantum gauge theories with fermions, including su-
persymmetric gauge theories, within the framework of the non-perturbative 1/N expansion
(N being the number of “flavors” of the corresponding matter fields). Although D = 3 gauge
theories are simpler than the realistic D = 4 gauge theories, the former retain most of the cru-
cial qualitative features of the latter. Thus, in our papers [A1–A9] (see next section) we find
for the first time in the literature explicit realizations of the non-perturbative mechanisms
modelling the principal physical properties of the realistic gauge theories ((i)–(iv)) above:
dynamical mass generation, including dynamical generation of gauge-invariant masses for the
gluons; multiple phases defined via more than one order parameters, which are related to
dynamical spontaneous breakdown (and restoration) not only of continuous internal symme-
tries, but also discrete space-time reflection symmetries; non-perturbative particle spectra,
qualitatively different in the various phases, including particle “confinement” in some of the
phases and their “deconfinement” in other phases.

Here for the first time in the literature we have proved explicitly the renormalizability of
naively non-renormalizable (within the standard perturbation theory) quantum field theory
models, including those containing four-fermion interactions. Furthermore, we have devel-
oped a systematic quantum field theoretic approach for description of the pertinent phase
transitions and critical behaviour of the D = 3 gauge theories with fermions, including su-
persymmetric gauge theories, within the non-perturbative 1/N expansion. In particular,
we provide explicit construction of the critical theories at the second order phase transition
points, which turn out to be three-dimensional supersymmetric nonlinear sigma-models.
The latter are nontrivial examples of D = 3 quantum conformal gauge theories with fermi-
ons whose anomalous operator dimensions are explicitly calculable with our 1/N expansion
techniques.

D = 3 gauge theories with fermions provide an arena for systematic non-perturbative
study of quantum anomalous (not spontaneous) symmetry breaking of discrete space-time
symmetries (P - and T -reflections). The primary importance of these parity-violating anom-
alies lies in the fact that discrete space-time reflection symmetries in D = 3 are close qualita-
tive analogs and, correspondingly, allow for a deeper understanding of the dynamical anom-
alous breaking of chiral symmetry in D = 4 quantum chromodynamics. Parity-violating
anomalies are also relevant in various other important topics, e.g., in the problem of fermion
number fractionization [4], the Hall effect [5], anomaly cancellations in higher-dimensional
(Kaluza-Klein) field theories [6], etc. In our papers [B2,B3,B4] included in the thesis we have
proposed an adequate systematic non-perturbative approach for description of the anomalous
breaking of discrete space-time symmetries based on the notion of Atiyah-Patodi-Singer topo-
logical “eta”-invariant. The gauge-invariant “eta”-function regularization of odd-dimensional
fermionic determinants (effective actions of quantized fermions) in the presence of non-trivial
non-vanishing background gauge fields at infinity is shown to give both anomalous and spon-
taneous violation of parity. We have explicitly calculated the competitive contributions of
both types of anomalies to the magnitude of induced currents and charges in a static or
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constant uniform backgrounds.

Stochastic quantization is a relatively new method of quantization of field theory models
first proposed by Parisi and Wu [7] (for a review, see Ref.[8]). The main idea of stochastic
quantization is to consider D-dimensional Euclidean quantum field theory as the equilibrium
limit of an (D + 1)-dimensional statistical system coupled to a thermal reservoir. This
statistical system evolves in a new fictitious time direction τ where the coupling to a heat
reservoir is given by means of a stochastic (“white”) noise field. In the equilibrium limit
τ → ∞ stochastic averages become identical to ordinary Euclidean correlation functions
(vacuum expectation values).

One of the main advantages of stochastic quantization of gauge field theories lies in the
fact that it avoids the use of gauge-fixing and Faddeev-Popov ghost field terms customary
in the customary quantization of gauge theories within the standard (naive) perturbation
theory. Also, the invariant stochastic regularization of ultraviolet divergencies explicitly
preserves all the underlying symmetries. The latter fact underscores the relevance of the
results in our papers [B1,B5,B6,B7,B8,B9] included in the thesis. Here for the first time
in the literature we have found and thoroughly studied the explicit mechanisms for the
appearance of dynamical anomalous (and spontaneous) breakdown of the symmetries in the
limiting equilibrium ordinary quantum field theory in spite of their manifest preservation by
the stochastic regularization for any finite stochastic time. In particular, we have found in
our paper [B8] the stochastic quantization’s analog of the famous Noether theorem about
symmetries versus conserved currents. Also, we have found the mechanism for topological
quantization of physical parameters in theories with topologically nontrivial phase spaces
within the stochastic quantization framework. Therefore, all results in [B1,B5,B6,B7,B8,B9]
are of primary importance for the self-consistency of the stochastic quantization scheme.

Modern string theory is considered as the most plausible candidate for a unifying theory
of all fundamental forces in Nature at ultra-high energies of the order of the Planck mass
scale. For the first time in history of physics string theory provides an adequate consis-
tent quantization of gravity, including the understanding of such fundamental cosmological
objects like quantum black holes and wormholes (for a review, see Refs.[9]), it underscores
the relevance of extra space-time dimensions, the relevance of supersymmetry, it lays new
ways to build grand unified theories in particle physics phenomenology [2], it inspires new
types of cosmological scenarios such as the so called “brane-worlds”, which indicate that
our own Universe could be just one copy of many other parallel universes embedded in
higher-dimensional space-time [10].

One of the main building blocks in string theory are the fundamental strings with space-
time supersymmetry – the so called Green-Schwarz superstrings [11] (see also [9]). The
latter are special kinds of gauge theories on the two-dimensional string world sheet. The
characteristic feature of Green-Schwarz superstrings from the point of view of their canonical
Hamiltonian description is that they represent infinite-dimensional dynamical systems with
constraints of both first-class as well as second-class according to Dirac classification [12],
which are mixed in a Lorentz non-covariant way. To this end let us recall that upon quan-
tization first-class constraints (generating gauge symmetries) and second-class constraints
(implementing reduction of the number of physical degrees of freedom) are treated in es-
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sentially different ways. Because of the latter fact the naive separation of the first- and
second-class constraints in the Green-Schwarz superstring models leads to loss of relativis-
tic invariance, thus necessitating a qualitatively new approach to the problem of manifestly
Lorentz-covariant superstring quantization.

In the series of our works [C1–C13] included in the thesis we have provided for the
first time in the literature a consistent systematic solution to the above mention problem
of covariant Green-Schwarz superstring quantization. This is achieved with the help of the
introduction of a special set of auxiliary (pure gauge) bosonic spinorial variables on the
string world-sheet, which implement the separation of the pertinent Hamiltonian constraints
into first-class and second-class in a manifestly Lorentz-covariant manner. Our original
approach has been employed, further developed and applied by various other authors for
a manifestly relativistically covariant treatment of super p-branes and super Dirichlet p-
branes [13], which subsequently were realized to constitute important building blocks of non-
perturbative string theory [9]. As a non-trivial application of our approach we have found
a new manifestly covariant off-shell unconstrained superfield formulation of supersymmetric
gauge field theories with extended supersymmetry.

The above sketchy review convincingly demonstrates that the theme and objectives of
the present thesis fit entirely within the framework of some of the most actively developing
research areas of modern theoretical and mathematical physics.

For a complete list of the all scientific contributions in the thesis, please, consult the last
Section 7.

Remark about the cited literature. Due to the obvious unfeasibility to supply a
complete exhaustive list of all relevant references pertaining to the material in the present
thesis, we have restricted ourselves in providing only citations of ground-laying, key or review
publications. References to the selected author’s papers included as part of the thesis are
given according to the numbering in the attached list in Section 6.
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2 Non-Perturbative Aspects of Three-Dimensional Gauge

Theories With Fermions

2.1 1/N Expansion of Vector QFT Models - General Remarks

1/N expansion of quantum field theory (QFT) models with internal U(N) (or O(N)) “flavor”
symmetry, where the fundamental matter fields belong to the vector representation (vector
QFT models for short), is one of the principal, most well understood and systematically
developed non-perturbative methods. Here the term “non-perturbative” means that 1/N
expansion is qualitatively different from standard (“naive”) perturbation theory w.r.t. cou-
pling constant(s), as its diagrams involve new types of internal propagator lines correspond-
ing to auxiliary “flavor”-singlet composite fields which are given by infinite resummation of
(subsets of) ordinary Feynman diagrams. The latter results in improved ultraviolet behavior
of 1/N diagrams which coupled with the fact that 1/N is dimensionless expansion parame-
ter makes renormalizable those vector QFT models which are non-renormalizable w.r.t. the
ordinary perturbation theory. Another important general property of 1/N expansion is that
it exhibits linear realization of U(N) (or O(N)) “flavor” symmetry in QFT models with a
nonlinearly realized “flavor” symmetry, i.e., the nonlinear sigma-models.

1/N expansion is the main instrument in uncovering and for explicit description of the
following important properties of QFT (many of these are among the main topics of the
present thesis):

(i) D = 2 QFT: dynamical breakdown of classical conformal symmetry via dimensional
transmutation of coupling constants together with asymptotic freedom, as well as construction
of higher local quantum conserved currents in D = 2 integrable models.

(ii) D ≥ 3 QFT: dynamical breaking of continuous and discrete (space- and time-
reflection) symmetries; non-trivial phase structure – several distinct types of phases with
multiple order parameters and the pertinent phase transitions; non-perturbative particle
spectra qualitatively different in the various phases; dynamical mass generation for the fun-
damental N -component matter fields; dynamical generation of massive gauge bosons where
the standard Higgs mechanism is inoperative; particle confinement in some of the phases, ex-
plicit appearance of composite bosons and fermions; renormalization of non-renormalizable
(w.r.t. ordinary perturbation theory) QFT models.

(iii) Further applications of 1/N expansion of vector models in various areas of QFT and
statistical mechanics (i.e., Euclidean QFT) include: finite-size effects (finite-size scaling in
the nonlinear sigma-models); stochastic Langevin equation in dissipative dynamics; finite-
temperature QFT (dimensional reduction crossover at high temperature); Bose-Einstein con-
densation in weakly interacting Bose gas; multicritical points and double scaling limit; for a
comprehensive review, see Refs.[14, 15].

Derivation of 1/N expansion via functional integral techniques is based on the following
general prescription:

(a) Introduce appropriate set of auxiliary “flavor”-singlet fields and rewrite the original
action in a (classically) equivalent form which is quadratic w.r.t. fundamental N -component
matter fields;
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(b) In the functional integral expression for the generating functional of the quantum
correlation functions perform the Gaussian functional integral over the N -component matter
fields to obtain an effective action depending only on “flavor”-singlet fields, where the factor
N appears as a common factor in front of it in the same way as the Planck constant appears
as a common factor 1/~ in front of the ordinary classical action in the standard functional
integral;

(c) Then the 1/N expansion becomes “semiclassical” expansion around saddle points of
the effective “flavor”-singlet action, which can be viewed as vacuum expectation values of
the pertinent “flavor”-singlet fields in the leading order w.r.t. 1/N (cf. Eqs.(21) below).

2.2 1/N Expansion of O(N) Non-Linear Sigma-Model

Let us start with the simpler example of 1/N expansion in D = 2, 3 O(N) nonlinear sigma-
model whose Lagrangian is given by:

LNLSM = −1

2
∂νϕa∂νϕa , ~ϕ 2 = µD−2 N

T
, ~ϕ =

(
ϕ1, . . . ϕN

)
(2)

Here and below µ denotes a common mass scale exhibiting the dimensionfull nature of the
coupling constants (so that T in (2) and T, g, e2 in (9) below are dimensionless parameters).
In D = 2 the O(N) nonlinear sigma-model is the physically most interesting example of a
D = 2 completely integrable field theory model due to its deep analogies with the realistic
D = 4 gauge theories (asymptotic freedom, dimensional transmutation, instantons). Apart
from this (2) describes quantum spin chains, effective low energy degrees of freedom of
the high-Tc superconductors, etc. In higher dimensions D ≥ 3 (2) and its generalizations
(with more complicated target spaces for the fundamental fields ϕa(x), such as complex
projective and Grassmannian manifolds [16], see below) play fundamental role in the general
field theoretic description of phase transitions and critical phenomena (see Refs.[A1–A9] and
subsection 2.4 below).

The 1/N expansion for the model (2) is obtained from the generating functional of the
time-ordered correlation functions:

Z[J ] =

∫
D~ϕ

∏
x

δ
(
~ϕ 2 − µD−2N/T

)
exp

{
i

∫
d2x

[
−1

2
∂ν ~ϕ ∂ν ~ϕ +

(
~J, ~ϕ

)] }
(3)

=

∫
D~ϕDα exp

{
i

∫
d2x

[
−1

2
∂ν ~ϕ ∂ν ~ϕ− 1

2
α

(
~ϕ 2 − µD−2N/T

)
+

(
~J, ~ϕ

)] }

=

∫
Dα exp

{
iNS1[α] +

i

2

∫
d2x d2y

(
~J(x), (−∂2 + α)−1 ~J(y)

) }

S1[α] ≡ i

2
Tr ln(−∂2 + α) +

µD−2

2T

∫
d2xα , ∂2 = ∂ν∂ν (4)

by expanding the effective α-field action (4) around its constant saddle point α̂ ≡ m2, i.e.,
α(x) = m2 + 1√

N
α̃(x). From the stationary equation δS1[α]/δα

∣∣
α=m2= 0 one obtains in the

D = 2 case:
m2 = µ̂2e−4π/T , (5)
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where µ̂ is a renormalization mass scale appearing due to renormalization of the ultraviolet
divergence coming from the first term in (4) (see Eq.(23) below). Thus, the “Goldstone”
fields ~ϕ acquire dynamically generated mass (squared) α̂ ≡ m2, classical conformal invariance
of (3) in the D = 2 case is broken due to the dimensional transmutation (the dimensionless
coupling T is replaced by m2 via Eq.(5)), and the classically nonlinearly realized O(N)
“flavor” symmetry becomes linearly realized on quantum level.

From (4) one arrives at the 1/N diagram technique with (free) propagators in momentum
space: 〈

ϕa ϕb
〉
(0)

= −i
(
m2 + p2

)−1
δab , 〈α̃ α̃〉(0) = 2

(
Σ

(
p2

))−1

(6)

with:

Σ
(
p2

)
= −

∫
dDk

(2π)D

[(
m2 + k2

) (
m2 + (p− k)2

)]−1
(7)

and tri-linear α̃ϕϕ-vertices, where one-loop ϕ-tadpoles and subdiagrams of the form in the
picture below are forbidden (solid lines depict ϕ propagators, dashed lines depict α̃ propa-
gators).

A remarkable property of the 1/N expansion in nonlinear sigma models has been found
in [A1,A2] (see also our paper [17], not included in the thesis). Namely, the nonlinearity of
the “Goldstone” field ~ϕ(x) is preserved on the quantum level as an identity on the correlation
functions, in spite of the manifest linear O(N) symmetry of the 1/N diagrams:

〈
N

[
~ϕ2P (~ϕ, ∂~ϕ)

]
(x) . . .

〉
= const

〈
N

[
P (~ϕ, ∂~ϕ)

]
(x) . . .

〉
(8)

where P (~ϕ, ∂~ϕ) is arbitrary local polynomial of the fundamental fields and their derivatives,
and N [. . .] indicates renormalized normal product of the corresponding composite fields
(for systematic renormalization of the 1/N expansion in arbitrary vector QFT models, see
[A1,A2,A6,A8] and subsection 2.5 below)

Another important result contained in our paper [17] (not included in the thesis) is the
explicit construction within the properly renormalized 1/N expansion of higher quantum
local conserved currents in the D=2 O(N) nonlinear sigma-model which provides the proof
of its complete integrability on quantum level.

2.3 1/N Expansion of Generalized Non-Linear Sigma-Models

Now we go over to the main subject of our considerations - D = 3 gauge theories with
fermions, specifically, D=3 gauged nonlinear sigma-models with fermions (GNLSM + F )3,
with internal symmetry U(N)(“flavor”)× U(n)(“color” gauge) (n < N). Special physically
relevant cases of the latter are the supersymmetric nonlinear sigma-models on complex pro-
jective and Grassmannian manifolds, e.g., by taking e2 → ∞, ε = 1 in (9) below. On the
other hand, (GNLSM + F )3 themselves can be viewed as special fixed points of general
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D = 3 (non-Abelian) Higgs models with fermions, containing “non-renormalizable” four-
fermion couplings (see our papers [18] not included in the thesis). (GNLSM + F )3 are of
particular physical interest since their 1/N expansion explicitly displays all the fundamental
non-perturbative properties listed above under (ii). Below we will discuss for simplicity 1/N
expansion for the Abelian (GNLSM + F )3 (n = 1, the non-Abelian case being a straight-
forward generalization).

The pertinent Lagrangian reads:

LGNLSM+F = − (∇ν(A)ϕa)
∗ (∇ν(A)ϕa)+iψ̄aγ

ν∇(ε)
ν (A)ψa+

g

4Nµ

(
ψ̄aψ

a
)2− N

4e2µ
Fνλ(A)F νλ(A)

(9)
with constraints:

ϕ∗aϕ
a −Nµ/T = 0 , ψ̄aϕ

a = ϕ∗aψ
a = 0 . (10)

Here the following notations are used: ∇ν(A)ϕa = (∂ν + iAν) ϕa, ∇(ε)
ν (A)ψa = (∂ν + iεAν) ψa,

Fνλ(A) = ∂νAλ − ∂λAν , where the “flavor” indices a = 1, . . . , N and the space-time indices
ν, λ = 0, 1, 2; ε is the ratio of fermionic to bosonic electric charges; γν are the standard
D = 3 Dirac gamma-matrices. Note the presence of the “non-renormalizable” four-fermion
(Gross-Neveu) term in (9).

Apart from the continuous U(N)(“flavor”)×U(1)(gauge) symmetry, (GNLSM +F )3 (9)
is invariant also under the discrete space-time transformations – space (P -) and time (T -)
reflections:

ϕ(P,T )(x) = ηP,T ϕ(xP,T ) , ψ(P,T )(x) = ηP,T γ1,2ϕ(xP,T ) , (11)

A(P )(x) = (A0,−A1, A2)(xP,T ) , A(T )(x) = (A0,−A1,−A2)(xP,T ) , (12)

where:
xP = (x0,−x1, x2) , xT = (−x0, x1, x2) , |ηP,T | = 1 . (13)

Note that the fermionic mass term (which does not appear in (9)) reverses sign under P, T -
reflection:

ψ̄(P,T )ψ(P,T )(x) = −ψ̄ψ(xP,T ) , (14)

and due to its absence in (9) the classical (GNLSM +F )3 is P, T -invariant. Therefore, P, T -
reflection symmetries can be viewed as D = 3 analogues of the chiral symmetry in D = 4
gauge theories with massless chiral fermions.

Introducing a set of auxiliary U(N)-singlet fields (real scalar α,σ and complex fermionic
ρ) one can rewrite the action (9) in the following (classically) equivalent form:

LGNLSM+F = − (∇ν(A)ϕa)
∗ (∇ν(A)ϕa)− α (ϕ∗aϕ

a −Nµ/T ) + iψ̄aγ
ν∇(ε)

ν (A)ψa − σψ̄aψ
a

−Nµ

g
σ2 + ϕa

(
ψ̄aρ

)
+ (ρ̄ψa) ϕ∗a −

N

4e2µ
Fνλ(A)F νλ(A) . (15)

Derivation of the 1/N expansion for the quantum generating functional Z[JΦ] of the time-
ordered correlation functions of (15) proceeds along similar lines as for the O(N) nonlinear
sigma-model (2)–(4). Unlike the D = 2 case, in D ≥ 3 the fundamental N -component scalar
field may acquire non-zero vacuum expectation value for certain range of the parameters,
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therefore, it is appropriate to split it in two parts – parallel and orthogonal w.r.t. direction
of the (possible) vacuum expectation value: ~ϕ = ~ϕ|| + ~ϕ⊥. Without loss of generality one
may choose:

~ϕ|| = (0, . . . , 0, N
1
2 ϕ||) , ~ϕ⊥ = (ϕ1, . . . , ϕN−1, 0) . (16)

Then performing the Gaussian functional integration w.r.t. ~ϕ⊥, ψ one gets:

Z[JΦ] =

∫
D~ϕ⊥DψDϕ||DαDσDρDAµ exp

{
i

∫
d3x

[
LGNLSM+F +

∑

Φ=ϕ,ψ,...

JΦ(x)Φ(x)
]}

(17)

=

∫
Dϕ||DαDσDρDAµ exp

{
iNS1

[
ϕ||, α, σ, ρ, A

]
+ iS2[JΦ]

}
(18)

Here the effective action reads:

S1

[
ϕ||, α, σ, ρ, A

]
= i(1− 1/N) Tr ln ∆B − i Tr ln ∆F

+

∫
d3x

[
−1

2
ϕ∗||∆Bϕ|| + α µ/T − σ2µ/g − 1

4e2µ
Fνλ(A)F νλ(A)

]
, (19)

where:

∆F ≡ iγν∇(ε)
ν (A)− σ , ∆B ≡ −∇ν(A)∇ν(A) + α + ρ̄∆−1

F ρ , (20)

and S2[JΦ] contains the terms with the sources.
Because of Lorentz invariance of the vacuum only ϕ||, α and σ may have non-zero constant

stationary values ϕ̂|| ≡ v, α̂ ≡ m2
ϕ, σ̂ ≡ mψ, where:

〈ϕa〉 = N
1
2

[
vδa

N + O(N−1)
]

, 〈α〉 = m2
ϕ + O(N−1) ,

〈
ψ̄ψ

〉
=

2Nµ

g
〈σ〉 =

2Nµ

g

[
mψ + O(N−1)

]
(21)

Thus, the saddle-point equations acquire the form:

δS1

δϕ∗||
= −m2

ϕ v = 0 ,
δS1

δα
=

mϕ

4π
−

[
|v|2 + µ

(
1

Tc

− 1

T

)]
= 0 ,

δS1

δσ
= −2mψ

[
mψ

4π
− µ

(
1

Tc

− 1

g

)]
= 0 (22)

The dimensionless constant Tc = 4πµ/µ̂ arises in the evaluation of the ultraviolet-divergent
integrals appearing in the variational derivatives of S1 which are renormalized according to
the “soft-mass” BPHZL subtraction scheme (for details, see subsection 2.5) with arbitrary
scale µ̂ (in particular, one may take µ̂ = µ) :

i
δ Tr ln ∆B

δα

∣∣∣∣∣bα=m2
ϕ,...,bρ=0

=

{
i

∫
dDp/(2π)D [m2

ϕ + p2]−1

}ren

= i

∫
dDp/(2π)D

[(
m2

ϕ + p2
)−1 − (

µ̂2 + p2
)−1

]
=





1
4π

ln
(
m2

ϕ/µ̂2
)

for D = 2

1
4π

(mϕ − µ̂) for D = 3
(23)

and similarly for −i {δ Tr ln ∆F /δσ}
∣∣bσ=mψ ,A=0

.
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2.4 Structure of Ground States and Phase Transitions. Non-
Perturbative Particle Spectra in Different Phases

The solutions of the saddle-point equations (22) yield the following phase structure of
(GNLSM + F )3 (9) characterized by the values of two order parameters 〈~ϕ〉, 〈

ψ̄ψ
〉

(21):

(I) U(N)(“flavor”)×U(1)(gauge) and P, T -symmetric “high-temperature” phase for T >
Tc and 0 < g < Tc, where:

v = 0 , mϕ = 4πµ (1/Tc − 1/T ) , mψ = 0 . (24)

(II) U(N)(“flavor”) × U(1)(gauge) symmetric “high-temperature” phase with sponta-
neous breakdown of discrete P, T -reflection symmetries due to dynamical generation of fermi-
onic mass mψ for T > Tc and either g < 0 or Tc < g < 2Tc, where:

v = 0 , mϕ = 4πµ (1/Tc − 1/T ) , mψ = 4πµ (1/Tc − 1/g) . (25)

(III) P, T -symmetric “low-temperature” phase with spontaneous breakdown of internal
U(N)(“flavor”)× U(1)(gauge) due to non-zero 〈~ϕ〉 (21) for T < Tc and 0 < g < Tc, where:

|v|2 = µ (1/T − 1/Tc) , mϕ = 0 , mψ = 0 . (26)

(IV) “Low-temperature” phase with spontaneous breakdown of both the discrete P, T -
symmetries (as in phase (II)) and internal symmetry (as in phase (III)) for T < Tc and either
g < 0 or Tc < g < 2Tc, where:

|v|2 = µ (1/T − 1/Tc) , mϕ = 0 , mψ = 4πµ (1/Tc − 1/g) . (27)

Let us recall that P, T -reflection symmetries are D = 3 analogues of the fermionic chiral
symmetry in D = 4.

The restriction g < 2Tc above originates from the stability requirement for the quantum
effective potential of (GNLSM + F )3 (9). According to the general definition it is given as
a Legendre transform of the logarithm of the quantum generating functional (17):

U (〈~ϕ〉, 〈ψ̄ψ〉) = −i ln Z
[
Jϕ, Jψ̄ψ

]− (
J∗ϕ a〈ϕa〉+ 〈ϕ∗a〉Ja

ϕ + Jψ̄ψ〈ψ̄ψ〉) . (28)

In the large-N limit one obtains (cf. relations (21)):

N−1U (〈~ϕ〉, 〈ψ̄ψ〉) = U1 (〈~ϕ〉, 〈σ〉)− g/4µ (δU1/δ〈σ〉)2 , (29)

where:

U1 (〈~ϕ〉, 〈σ〉) = 1/6π
(|〈σ〉|3 − 〈α〉3/2

)−µ|〈σ〉|2 (1/Tc − 1/g)+〈σ〉 [|〈~ϕ〉|2 + µ (1/Tc − 1/T )
]

.
(30)

From (29)–(30) we get:

δ2U
(δ〈ψ̄ψ〉)2

> 0 (stability) only for g < 2Tc (31)
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All phase transitions between any pair of the above phases are second-order on the lines
T = Tc and g = Tc on the (T, g) parameter plane. On the other hand, the line g = 0
corresponds to first-order phase transitions between phases (I) and (II) for T > Tc, and
between phases (III) and (IV) for T < Tc.

All four phases exhibit qualitatively different non-perturbative particle spectra. The
spectra are directly derived from the momentum-space pole structure of the propagators
in the pertinent 1/N diagrams, where the propagators themselves are determined from the
quadratic part of the expansion of the large-N effective action (19) around its saddle points.
Here we will write down the explicit form of the “free” 1/N propagators in momentum space
in an unified form valid simultaneously in all different phases (I)–(IV) of (GNLSM + F )3

(9)–(10). For the fundamental matter and gauge fields we have:

〈ϕaϕ
∗
b〉(0) (p) = (−i)δab

[
m2

ϕ + p2
]−1

+
(
p2

)−2
vav

∗
bN 〈α α〉(0) (p) , (32)

〈
ψaψ̄b

〉(0)
(p) = (−i)δab (mψ − γνpν)

[
m2

ψ + p2
]−1

+
(
p2

)−1
vav

∗
bN 〈ρ ρ̄〉(0) (p) , (33)

〈Aν Aλ〉(0) (p) = N−1i
[F2(p; e, ε) + p2ε4G2(p)

]−1

×{
(ηνλ − pνpλ/p

2)F(p; e, ε) + iε2ενλκp
κG(p)

}
, (34)

where the following notations are used:

F(p; e, ε) ≡ p2

e2µ
+ |v|2 +

(
4m2

ϕ + p2
) 1

2
F (p2; mϕ)− 1

4π
mϕ

+ε2
[ 1

4π
|mψ| −

(
4m2

ψ − p2
) 1

2
F (p2; mψ)

]
(35)

G(p) ≡ 2mψ F (p2; mψ) =
1

4π
sign(mψ)f(−p2/4m2

ψ) (36)

with:

f(z) =





(−z)−
1
2 arctan[(−z)

1
2 ] for z < 0

1
2
z−

1
2 ln[(1 + z

1
2 )(1− z

1
2 )−1] for z > 0

. (37)

The propagators for the auxiliary “flavor”-singlet fields read:

〈α α〉(0) (p) = iN−1
[
F (p2; mϕ) + 2|v|2/p2

]−1
, (38)

〈σ σ〉(0) (p) = −iN−1
[(

4m2
ψ + p2

) 1

2
F (p2; mψ) + 2µ(1/g − 1/Tc)θ(g)θ(Tc − g)

]
, (39)

〈ρ ρ̄〉(0) (p) = 2iN−1
[
(2mψ − γνpν) F

(
p2; (mϕ + mψ)/2

)
+ 2i|v|2 (mψ + γνpν)

−1
]−1

. (40)

The richest particle spectrum occurs in phase (II). It contains:
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(1) N pairs of bosons ϕa and fermions ψa with dynamically generated masses.
(2) Massive composite fermion corresponding to the auxiliary fermionic singlet field ρ in

the regime mϕ > |mψ| with mass mρ = 2|mψ|. This fermion can be viewed as a bound state
of the fundamental ϕ- and ψ-quanta.

(3) Dynamically generated topologically massive gauge bosons Aν – this is due to the
presence in phase (II) of P, T -parity breaking term containing ενλκ in their propagator (34).
In the low-energy limit (|p|2 ¿ m2

ϕ,ψ) the latter term is equivalent to the appearance of an
effective gauge-invariant topological Chern-Simmons term:

N

16π

∫
d3x ενλκAνFλκ(A) (41)

in the (GNLSM + F )3 Lagrangian (9) (in the non-Abelian case Chern-Simmons terms
are invariant under gauge transformations up to a shift by the topological charge of the
corresponding gauge group element, see next section).

The gauge bosons Aν disappear completely (they are “confined”) in all the remaining
phases (I), (III) and (IV) due to the appearance of

√
p2-singularity in the Aν-propagators

(34). Thus, in spite of the unbroken gauge symmetry in phases (I) and (II), massless gauge
bosons are absent there. Also, the standard Higgs mechanism for generating masses of gauge
bosons does not operate in phases (III) and (IV) in spite of the spontaneous breakdown of
the gauge symmetry there.

In phase (I) there are N massive bosons ϕa, N massless fermions ψa and a massless
composite fermion ρ.

In phase (III) the particle spectrum consists of only N −1 massless Goldstone bosons ϕ⊥
and N − 1 massless fermions ψ⊥ (the splitting ψ = ψ|| + ψ⊥ is defined in complete analogy
with (16)). All remaining fields are “confined” here, in particular, the gauge bosons Aν and
part of the fundamental bosonic ϕ|| and fermionic ψ|| matter fields.

In phase (IV) there are the same N − 1 massless Goldstone bosons ϕ⊥ as in phase (III),
N − 1 massive fundamental fermions ψ⊥ and a massless fundamental fermion ψ||, all the
remaining fields being “confined”.

It is also worth mentioning that at the critical point T = Tc, g = Tc and upon taking the
scaling limit (GNLSM +F )3 (9) becomes the D = 3 supersymmetric non-linear sigma-model
on the complex projective space CPN−1:

Lsusy−CP N−1 = − (∇ν(A)ϕa)
∗ (∇ν(A)ϕa) + iψ̄aγ

ν∇ν(A)ψa +
Tc

4Nµ

(
ψ̄aψ

a
)2

(42)

with constraints:
ϕ∗aϕ

a −Nµ/Tc = 0 , ψ̄aϕ
a = ϕ∗aψ

a = 0 . (43)

This is a non-trivial D = 3 superconformal field theory with a well-defined renormalizable
1/N expansion where all relevant anomalous conformal dimensions (some of them describing
the critical behaviour of (GNLSM + F )3 (9) in the vicinity of the second-order phase tran-
sitions) can be explicitly computed order by order in 1/N from our 1/N diagram techniques
(1/N propagators (32)–(40) with mϕ,ψ = 0, v = 0, g = Tc, e2 →∞, ε = 1).

For further details, see [A7,A8,A9] and also our papers [18] not included in the thesis.
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2.5 Renormalization of 1/N Expansion. Renormalization of Non-
Renormalizable Theories

Although the diagrams of the 1/N expansion of vector QFT models have vastly improved
ultraviolet behaviour in comparison with the Feynman diagrams of ordinary “naive” pertur-
bation theory, they still contain ultraviolet divergences which can be systematically renormal-
ized both in D = 2 and D ≥ 3 by a version (developed in our papers [A1,A2,A6,A8]) of the
mass-independent (“soft-mass”) momentum-space subtraction procedure of Zimmermann-
Lowenstein [19], which in turn is based on the general Bogoliubov-Parasiuk-Hepp-Zimmermann
[20] renormalization scheme (BPHZL scheme for short). The BPHZL renormalization scheme
has the advantage over other renormalization schemes in that it can be applied simultane-
ously and in an uniform way in all phases of the pertinent QFT models, especially in those
of them with phases containing massless particles where particular care is needed to avoid
possible infrared singularities. The general idea is to perform all subtractions in the in-
tegrands of ultraviolet-divergent Feynman diagrams at zero external momenta and at zero
values of the mass parameters except for those which by naive power counting would give
rise to infrared divergences, so that the latter subtractions are performed at zero external
momenta but at non-zero values of the mass parameters.

Technically, this is accomplished in the following way:
(a) One rescales temporarily all dimensionfull (mass) parameters M entering the prop-

agators and vertices of any 1/N diagram M → sdM M , where dM is the canonical mass
dimension of M . In particular, in the “free” 1/N propagators for the gauge and auxiliary
“flavor” singlet fields (34)–(40) mϕ,ψ → smϕ,ψ and the low-temperature vacuum expectation
value |v| → s1/2|v|. At the end of the subtraction procedure the auxiliary parameter s is set
to s = 1.

(b) For the masses in the propagators of the fundamental N -component matter fields
(32)–(33) one assigns temporarily a slightly more complex dependence on the auxiliary pa-
rameter s:

[
m2

ϕ + p2
]−1

−→
[
(smϕ + (1− s)µ̂)2 + p2

]−1

, (44)

(mψ − γνpν)
[
m2

ψ + p2
]−1

−→ (smψ − γνpν)
[
(smψ + (1− s)µ̂)2 + p2

]−1

, (45)

where µ̂ is arbitrary renormalization mass scale and again at the end of the subtraction
procedure one sets s = 1.

(c) The momentum space Taylor subtraction operators τ δ(Γ),ρ(Γ) in the fundamental “for-
est formula” [20, 19] of the recursive BPHZL subtraction scheme, acting on the integrand of
a UV-divergent (sub)diagram Γ, are now defined as:

1− τ δ(Γ),ρ(Γ) =
(
1− t

ρ(Γ)−1
{p},s−1

) (
1− t

δ(Γ)
{p},s

)
. (46)

Here {p} is the set of all external momenta, δ(Γ) and ρ(Γ) are the ultraviolet and infrared
indices of the (sub)diagram Γ. δ(Γ) is determined from the asymptotic behaviour of the
integrand of Γ for large internal momenta, whereas ρ(Γ) is determined from the asymptotic
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behaviour of the Γ-integrand for small internal momenta at vanishing external momenta and
all masses set to zero. tnx,y denotes the usual Taylor subtraction operator:

tnx,yF (x, y) ≡
n∑

k,l=0 , k+l≤n

xk

k!

yl

l!

∂k+lF

∂xk∂yl

∣∣
x=0,y=0

. (47)

Further details are contained in the included papers [A1,A2,A6,A8].
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3 Anomalies in Odd-Dimensional Quantum Field

Theory and in Stochastic Quantization Scheme

Quantum mechanical breaking of classical symmetries, a.k.a. quantum anomalies, are rather
a rule than an exception in quantum field theory. First of all, breaking of the “naive” scaling
of dimensionfull quantities (particle momenta, masses etc) is the ubiquitous anomaly present
in any quantized field-theoretic model. It is due to the inevitable introduction of an addi-
tional (not present on classical level) mass scale in the process of renomalizing the inherent
ultraviolet divergencies. Thus, scaling anomalies (anomalous dimensions of quantized fields)
control high-energy behaviour of particle scattering processes (e.g., “asymptotic freedom” in
quantum chromodynamics (for a review, see Ref.[22]) as well as critical behaviour of statis-
tical mechanical systems (a.k.a. Euclidean quantum field theories) in the vicinity of second
order phase transition critical points, where the basic instrument are the renormalization
group equations [15]. See our papers [A1–A8] from the previous section for non-perturbative
description of critical behaviour of D = 3 gauge theories (with fermions).

The next most important class of quantum anomalies are the chiral anomalies in D=even
dimensional gauge theories with massless fermions. They also play fundamental role in de-
termining low-energy pseudo-scalar meson processes (Adler-Bell-Jackiw anomaly) as well as
providing of guiding principles for determining the correct fermionic multiplets in (grand)
unified and string theory inspired gauge theories of fundamental particle interactions (“anom-
aly cancellation” mechanisms). For review, see [23, 24, 25]. In subsection 3.4 below we will
study systematically the mechanism through which chiral anomalies arise in the relatively
new alternative to standard quantum field theory – the so called stochastic quantization
scheme.

We will first start with discussion of D=odd dimensional gauge theories with massless
fermions where the concept of chiral gauge symmetry is absent. However, there occurs a
different type of anomaly – quantum anomalous breaking of the discrete space-time reflec-
tion (P - and T -reflection) symmetries. The behaviour of bilinear fermionic composite fields,
e.g., fermionic mass terms under P - and T -reflections in odd D is analogous to their trans-
formation properties under chiral gauge symmetries in even D. Therefore, odd-dimensional
parity-violating anomalies provide a nontrivial “toy” model for deeper understanding of
anomalous chiral symmetry breaking in quantum chromodynamics.

3.1 Parity-Violating Anomalies

The effective action of quantized fermions in background gauge (and scalar) fields is of the
form (in this and next subsections we will consider Euclidean quantum field theories):

exp{−Seff (A,ϕ)} =

∫
DψDψ̄ exp{−

∫
dDx ψ̄ i 6 ∇(A,ϕ)ψ}

−Seff (A,ϕ) = ln det[−i6 ∇(A,ϕ)] (48)

yielding the induced fermionic current:

Jµ
a (x) =

〈
ψ̄(x)Ta(−iγµ)ψ(x)

〉
= −i[δ/δAa

µ(x)] ln det[−i6 ∇(A,ϕ)] (49)
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where the Dirac operator:

6 ∇(A,ϕ) ≡ γµ[∂µ + iAµ(x)] + ϕ(x) ; Aµ = TaA
a
µ , ϕ(x) = ϕ1(x) + γ5ϕ2(x) , (50)

(ϕ2 ≡ 0 for odd D), {T a}a=0,1,...,n2−1 are hermitian generators of G = U(n).
A systematic non-perturbative gauge-invariant regularization and renormalization of the

one-loop fermionic effective action (48) [B2,B3,B4,B1] (see also [26] and our paper [27] not
included in the thesis) is achieved via the heat-kernel method for elliptic operators (see
Ref.[28] for mathematical background, and Ref.[29] for a physicist’s perspective). Let B be
an elliptic operators with spectral asymmetry, e.g., B = 6 ∇(A,ϕ):

B =

∫
dλ λPB(λ) , PB(−λ) 6= PB(λ) , (51)

where PB(λ) is the spectral density operator. Using the well-known heat-kernel representa-
tion of fractional powers of non-negative elliptic operators B, e.g., B = B2 = 6 ∇2(A,ϕ):

B−s =

∫ ∞

0

dτ
τ s−1

Γ(s)
exp{−τB} (52)

we have the following heat-kernel representations for zeta-functions and eta-functions:

ζB2(s) =
∑

λ6=0

(λ2)−s = Tr

∫
dλλ−2sPB(λ) = Tr(B2)−s = Tr

∫ ∞

0

dτ
τ s−1

Γ(s)
exp{−τ B2} , (53)

ηB(s) =
∑

λ 6=0

sign(λ)|λ|−s =

∫
dλ sign(λ)|λ|−s Tr[PB(λ)]

= Tr
[
B(B2)

−s+1
2

]
=

∫ ∞

0

dτ
τ

s−1
2

Γ( s+1
2

)
Tr

[
Be−τB2

]
. (54)

In particular:

ηB ≡ ηB(0) =

∫ ∞

0

dτ (πτ)−1/2 Tr
[
B exp{−τ B2}] (55)

is the spectral asymmetry measuring eta-invariant of Atiyah-Patodi-Singer [30].
Using the heat-kernel representation (55) we derive the following explicit formula for the

variation of the eta-invariant with respect to variation of the coefficients of the underlying
elliptic operator denoted by δB below:

δηB(0) = − 2√
π

Tr
[(

δB
)
Φ− 1

2
(B2; ·)

]
+ 2 Tr

[(
δB

)PB(0)
]

(56)

The first term on the right hand side of (56) is due to the short proper-time (the ultraviolet)
behaviour of the heat kernel. The object Φ− 1

2
(B2; ·) is the coefficient in front of τ−1/2 in the

Seeley-De Witt expansion of the heat-kernel [28]:

exp{−τB2}(x, x) =
∞∑

j=0

τ (j−D)/2Φ(j−D)/2(B
2; x) (57)
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Let us emphasize that all Seeley coefficients Φ(j−D)/2(B
2; x) are local functionals of dimension

j with respect to the coefficients of B. In particular, Seeley coefficients for B = 6 ∇(A,ϕ)
(the Dirac operator (50)) are local gauge-invariant functionals of the corresponding fields.

The second term on the right hand side of (56) is due to the large proper-time (the
infrared) behaviour of the heat kernel. The object PB(0) is the operator spectral density for
the corresponding zero-modes and, accordingly, it vanishes in the absence of zero-modes of
B.

Formula (56) plays fundamental role in deriving all new results related to parity-violating
anomalies in [B2,B3,B4,B1].

Now, with the help of (51)–(55) and using the identity ln λ= 1
2
ln λ2−iπ

2

(
sign(λ)−1

)
inside

operator spectral integrals, we obtain the following gauge invariant renormalized expression
for the determinant of the Dirac operator (50):

ln det[−i6 ∇(A,ϕ)] =
1

2
ln det[ 6 ∇2(A,ϕ)]− i

π

2
η 6∇(A,ϕ) − Sc.t.[A,ϕ] (58)

The last term in (58) is local gauge-invariant counterterm accounting for the renormalization
ambiguity.

The first “normal” term on the right hand side of (58) is given by the zeta-function
regularization formula (cf. (53)):

ln det[ 6 ∇2(A,ϕ)] = −
∫ ∞

0

dτ

τ
Tr{exp[−τ 6 ∇2(A,ϕ)]} =

∂

∂s
ζ 6∇2(A,ϕ)(s)

∣∣
s=0

(59)

Quantum parity-violating anomalies are due to the second spectral asymmetry measuring
term on the right hand side of (58), which is up to a coefficient the Atiyah-Patodi-Singer
eta-invariant (55) of the Dirac operator (50):

η6∇(A,ϕ) =

∫ ∞

0

dτ (πτ)−
1
2 Tr{6 ∇(A,ϕ) exp[−τ 6 ∇2(A,ϕ)]} (60)

Taking functional derivative of (60) with respect to Aµ (henceforth we shall discard for
simplicity the dependence on the scalar field vp), applying the general variation formula (56)
and integrating back we obtain:

η6∇(A) = (−1)(D+1)/22
{

W
(D)
Ch−S[A] +N [A]

}
. (61)

Here W
(D)
Ch−S denotes the well-known Chern-Simmons term, whose explicit form in D = 3

reads:

W
(3)
Ch−S[A] =

1

16π2

∫
d3x εµνλ tr{AµFνλ − i

2

3
AµAνAλ} (62)

(cf. (41) for the Abelian case; here an additional normalization factor 1/pi has been intro-
duced for notational convenience). For general odd dimensions see Eq.(125) below.

Next, N [A] is a non-trivial functional of Am determined from:

[δ/δAa
µ(x)]N [A] = (−1)(D+1)/2i tr[Taγ

µP6∇(A)(0; x, x)] (63)
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When Aµ obey standard boundary conditions Aµ(x) = −ig−1(x̂)∂µg(x̂)+O(|x|−1−ε for |x| →
∞ (e.g., Aµ – quantum fluctuating) we have [B1] (see also our paper [27] not included in the
thesis):

P6∇(A)(0; x, x′) =

{
δ(0)Π

6∇(A)
0 (x, x′) = ∞ if λ = 0 is a discrete eigenvalue

0 otherwise
(64)

with Π
6∇(A)
0 (x, x′) being the kernel of the zero-mode projector. In this case N [A] is piece-

wise constant functional taking integer values (it can be associated with an index of an
appropriate (D + 1)-dimensional Dirac operator [30]).

Let us stress that both η 6∇(A), as well as W
(D)
Ch−S[A] andN [A] are odd under P, T -reflections.

On the other hand η6∇(A) is manifestly gauge invariant under arbitrary gauge transformations
as evident from the heat-kernel representation (60), whereas its constituents both change
under topologically non-trivial (“large”) gauge transformations as:

W
(D)
Ch−S[A

g] = W
(D)
Ch−S[A] + nD[g] , N [Ag] = N [A]− nD[g] (65)

with Ag
µ = g−1Aµg − g−1i∂µg, where:

nD[g] = −(i/2π)(D+1)/2
(1

2
(D − 1)!

)
(D!)−1εµ1...µD

∫
dDx tr

[(
g−1∂µ1g

)
. . .

(
g−1∂µD

g
)]

(66)

is the topological charge of g(x) ∈ U(n). The corresponding homotopy group determining
the topological charge of g(x):

πD(U(n)) =

{
Z for odd D < 2n
0 for odd D > 2n .

(67)

In the second topologically trivial case the Chern-Simmons term is gauge invariant and the
functional N [Ag] identically vanishes.

We conclude this subsection with the following observation concerning the possible choices
for the local gauge invariant counterterm Sc.t.[A] in (58):

(A) For either a trivial homotopy group (odd D > 2n) or if odd D < 2n (cf. (67)) and
the number of fermion “flavors” Nf =even simultaneously, an admissible choice is:

NfSc.t.[A] = iπ(−1)(D−1)/2NfW
(D)
Ch−S[A] (68)

which cancels the parity-violating part from the eta-term (61) and, therefore, in this case
parity-violating anomalies are absent.

(B) In the opposite case, i.e. for nontrivial homotopy of the gauge group (67) and odd
Nf simultaneously, the only admissible choice for the counterterm is:

Sc.t.[A] = iπ(−1)(D−1)/2NfW
(D)
Ch−S[A

a=0] (69)

where Aa=0 is the Abelian U(1) part of the gauge field. Therefore, in this case the Chern-
Simmons term for the non-Abelian SU(n) part cannot be cancelled in (61) and the parity-
violating anomaly is unavoidable.
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3.2 Boundary Effects and Interplay Between Spontaneous and
Anomalous Breaking of Parity in Odd Dimensions

In the case when Aµ is a non-trivial background field, e.g., when Aµ is static (with zero
electric field) or when the field strength Fµν(A) is uniformly non-vanishing at infinity (in
either direction), then N [A] becomes a non-trivial smooth functional contributing a sponta-
neous (not anomalous) parity breakdown in addition to the already present parity violating
anomaly due to the first Chern-Simmons term in (61). This issue has been studied in detail
in [B3].

First, let us consider the static case:

A0 = 0 , Ak = Ak(x) , k = 1, . . . , D − 1

Ak(x) = −ih−1(x̂)∂kh(x̂) + O
(|x|−1−ε

)
, |x| → ∞ , h : SD−2 → U(n) (70)

where we get:

P 6∇(A)(0; x, x) =
1

2π
Π
6∇D−1

0 (x, x) (71)

6 ∇(A) = γ0∂0 + 6 ∇D−1 , 6 ∇D−1 = γk [∂k + iAk(x)] , (72)

Here Π
6∇D−1

0 (x, x′) denotes the kernel of the zero-mode projector of the (D−1)=even dimen-
sional Dirac operator 6 ∇D−1 (72).

With the help of the above machinery we derive an entirely parity-odd expression for the
induced fermionic current (49) in a static gauge field background (we confine ourselves to
the singlet current, i.e., for a = 0):

N−1
f Ja=0

0 (x) =





(−1)(D+1)/2 1
2
index( 6 ∇D−1; x)

if conditions (A) above hold ,
(−1)(D+1)/2 1

2

{C(D−1)/2(F
a=0; x)− [C(D−1)/2(F ; x)− index( 6 ∇D−1; x)

]}
if conditions (B) above hold .

(73)
Here:

index( 6 ∇D−1; x) = tr
[
γ5Π

6∇D−1

0 (x, x) (74)

indicates the index density of 6 ∇D−1, F a=0
µν is the Abelian part of the field strength Fµν(A),

and C(D−1)/2(F ; x) denotes the denisty of the well-known Chern characteristic class – “in-
stanton” number of Ak(x) in (D − 1) = even dimensions (cf. e.g. Ref.[31]).

Thus, accounting for the standard index theorem:

∫
dD−1x index( 6 ∇D−1; x) =

∫
dD−1x C(D−1)/2(F ; x) = nD−2[h] (75)

where nD−2[h] is the topological charge (66) of h(x̂) appearing in (70), relations (73) yield
the following result for the induced static charge:

Qind =

∫
dD−1x Ja=0

0 (x) = Nf (−1)(D+1)/2 1

2
nD−2[h] (76)
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when conditions (A) above hold, i.e. we obtain a fractional (half-integer) induced charge.

Next, let us consider the case of non-trivial boundary conditions:

Fµν(A) → Fµν(A
as) = const for |x| → ∞ . (77)

For the spectral density at λ = 0 we obtain:

P 6∇(A)(0; x, x) =
[
U±P6∇(Aas)(0)U∗

±
]
(x, x) , P6∇(Aas)(0) =

(
16π2

)−1
εµνλ(−iγµ)Fνλ(A

as) , (78)

where U± denote scattering wave operators for H = 6 ∇2(A) and H0 = 6 ∇2(Aas) (“total” and
“free” quantum mechanical “hamiltonians”).

Using (78), for either G = U(1) or G = SU(n) and Nf =even we get:

N−1
f Ja

µ(x) =
n

8π
εκλνF b

λν(A
as)wab

µκ(x) + parity-normal terms , (79)

wab
µν(x) ≡ − 1

2n
tr{T aγµ

(∫
d3yU±(x, y)

)
T bγν

(∫
d3yU∗

±(y, x)
)}

= δµνδ
ab + nonlocal functional of (Aµ − Aas

µ ) .

Accordingly, for G = SU(n) and Nf =odd we obtain:

N−1
f Ja

µ(x) = N−1
f Ja

µ(x)
(
Eq.(79)

)− n(8π)−1εµνλF a
νλ(A(x)) . (80)

Our result (79) differs from the result in the special case G = U(1) presented in Refs.[4]
where the local form n(8π)−1εµνλF a

νλ(A(x)) for the parity breaking term, i.e., a would-be
parity violating anomaly was claimed. Our analysis shows that, upon careful treatment of
the non-local functional N [A] in the systematic eta-function renormalization of the fermionic
determinant (61)–(63), the correct parity-odd term in the induced current (79) is non-local
and it is entirely due to the spontaneous breakdown of parity through the non-trivial bound-
ary conditions (77) for the background field, therefore, it does not represent a parity violating
anomaly.

3.3 Conserved Noether Currents in Stochastic Quantization

By its introduction [7] (for a comprehensive review, see Ref.[8]) the stochastic quantization
scheme (SQS) was in intended to give an alternative way of quantization of field theory
models, in particular, to provide new invariant regularizations [32] which presumably respects
simultaneously all symmetries of the underlying models.

In usual field theory the symmetries of the classical action correspond via the Noether
theorem to conserved currents which, upon quantization, yield Ward identities for the cor-
relation functions of the quantum fields. Unlike this, the original formulation of SQS [7] in
terms of stochastic Langevin equations is not based on an action principle and, therefore,
the underlying symmetries of SQS averages (the stochastic analogues of the quantum field
theory correlation functions) are not expressed in terms of Ward-like identities.

In our paper [B8] we have proposed a systematic general procedure for deriving stochastic
Noether conserved currents by employing the superspace formulation of SQS (first proposed
in [33] and further developed in our paper [B8]).
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Let us briefly recall the stochastic Langevin equation for a general D-dimensional (Euclid-
ean) field theory with a classical action S[ϕ] =

∫
dDxL(ϕ):

∂τϕη = −KδS

δϕ

∣∣∣∣
ϕ=ϕη

+ η , 〈η(τ, x) η(τ ′, x′)〉 = 2Kδ(τ − τ ′) δ(D)(x− x′) . (81)

Here τ denotes the stochastic evolution time, K ≡ K[∂x] is an appropriate differential oper-
ator which ensures the positiveness of the corresponding Fokker-Planck Hamiltonian [32].

The generating functional of SQS averages 〈ϕη(τ, x1) . . . ϕη(τ, xn)〉 (choosing initial con-
ditions ϕη(τ = −∞, x) = 0 in (81)) reads:

Z[h] = exp
(
∓1

2
Tr lnK

) ∫
Dη exp

{∫
dDxdτ

[−1

4
ηK−1η + hϕη

]}
. (82)

The signs ∓ refer to ϕ , η being bosonic/fermionic. Z[h] turns out to be (formally) equal
to the generating functional of correlation functions of the following supersymmetric field
theory in (D + 1|2)-dimensional superspace [33],[B8]:

Z[h] = Z[H] =

∫
DΦ exp

{
−Σ[Φ] +

∫
dD+1|2z HΦ

}
, (83)

Σ[Φ] =

∫
dD+1|2z

[1

2
DΦK−1DΦ− 1

2
DΦK−1DΦ− iL(Φ)

]
, (84)

where:

z ≡ (
τ, x; θ, θ̄

)
, D = ∂/∂θ , D = ∂/∂θ̄ − i∂τ ,

{
D , D

}
= i∂τ (85)

and the pertinent superfields are of the form:

Φ(z) = ϕ(τ, x) + θ̄ χ(τ, x) + χ̄(τ, x) θ + θ̄θ F (τ, x) , H(z) = θ̄θ h(τ, x) . (86)

It is easy to show [B8] that, due to the τ -translation invariance and the manifest super-
symmetry, all stochastic correlation functions for equal τ ’s and equal θ, θ̄’s given by (82) are
in fact τ - and θ-independent and, therefore, they are equal to their equilibrium limits:〈

Φ(τ, x1; θ, θ̄) . . . Φ(τ, xn; θ, θ̄)
〉

= lim
τ→∞

〈ϕη(τ, x1) . . . ϕη(τ, xn)〉 = 〈ϕ(x1) . . . ϕ(xn)〉

≡ (
δn/δjn

) ∫
Dϕ exp

{∫
dDx [−L(ϕ) + jϕ]

} ∣∣
j=0

(87)

The stochastic superspace action (84) respects all symmetries G of the original D-
dimensional field-theory action (providedK has been appropriately chosen to be G-covariant).
Therefore, we can apply to (84) the standard Noether procedure in order to derive conserved
currents JM(z) ≡ (Jµ, Jθ, Jθ̄) (z) in the (D + 1|2-dimensional supersymmetric theory which
precisely represent the SQS analogues of the usual Noether conserved currents jµ(x) in D
dimensions. We find (using the same notations as in (85)):

DJθ[Φ] + DJθ̄[Φ] + ∂µJµ[Φ] = 0 , (88)

Jθ[Φ] = iδΦ
(K−1DΦ

)
, Jθ̄[Φ] = −iδΦ

(K−1DΦ
)

, (89)

Jµ[Φ] = jµ[Φ]− i/2 (DΦ)
( δ

δBµ

K−1[∂x + B]
∣∣
B=0

)
(DΦ)

+i/2 (DΦ)
( δ

δBµ

K−1[∂x + B]
∣∣
B=0

)
(DΦ) . (90)
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Here K[∂x + B] is the gauge-covariant counterpart of K[∂x] with Bµ being an auxiliary G-
gauge potential. The first term on the right hand side of (90) formally resembles the ordinary
D-dimensional field theory conserved current:

jµ[Φ] = δΦ
( ∂

∂(∂mΦ)
L −Rµ

)
(91)

where δΦ and δL = ∂µRµ are the standard Noether variations under the corresponding
G-symmetry transformations.

When calculating stochastic averages (87) and, in particular, when studying the Ward
identities for the stochastic conserved currents (88)–(91) via the stochastic superspace func-
tional integral (83), we encounter as expected ultraviolet divergencies. In our paper [B8] we
have proposed a new ultraviolet regularization in SQS, which manifestly preserves all sym-
metries of the original D-dimensional field theory as well as the stochastic supersymmetry
of (84). The latter is introduced by modifying the free Φ-propagator entering the pertinent
stochastic superspace diagrams:

〈Φ(z) Φ(z′)〉(0)
reg = iK

∫ ∞

0

dα ρΛ(α) exp (−αKS ′′) (x, x′) exp
(−iα [D, D]

)
δ(τ−τ ′)δ(2)(θ−θ′) ,

(92)
where:

S ′′ ≡ δ2S/δϕ2
∣∣
ϕ=0

, δ(2)(θ − θ′) ≡ (θ̄ − θ̄′)(θ − θ′) , (93)

and the regularizing function ρΛ(α) obeys the properties:

lim
Λ→∞

ρΛ(α) = 1 , (dk/dαk)ρΛ(α)
∣∣
α=0

= 0 , k = 0, 1, . . . , L , (94)

L being an appropriate integer depending on the space-time dimension D. A particular
choice for ρΛ(α) is:

ρΛ(α) = 1− exp(−Λα)
( L∑

k=0

1

k!
(Λα)k

)
for α ≥ 0 ; ρΛ(−α) = −ρΛ(α) . (95)

With the regularized propagator (92), all ultraviolet divergencies in the superspace diagram
expansion of (83) manifesting themselves as singularities O(α−k) , k ≥ 1, in the proper-time
integrals entering the diagram expressions are regulated by ρΛ(α) (94).

In fact, one can show that our manifestly supersymmetric stochastic regularization (92)
yields the same final results as the standard Breit-Gupta-Zaks stochastic regularization [32],
which smears out the “white-noise” correlator in (81):

〈η(τ, x) η(τ ′, x′)〉Λ = 2KδL(τ − τ ′) δ(D)(x− x′) , (96)

(cf. Eq.(103) below), provided we choose [B8]:

2δΛ(α) =
d

dα
ρΛ(α) (97)
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3.4 Chiral Anomalies in Stochastic Quantization

Let us now apply the machinery developed in the previous section to the problem of reproduc-
ing in the equilibrium limit of the well-known chiral anomalies in stochastically quantized
gauge theories with massless fermions bearing in mind that SQS manifestly preserves all
symmetries of the underlying classical field theory at finite stochastic times.

We start with stochastic quantization of massive Dirac fermions in a background gauge
field, whose (Euclidean) action reads:

S[ψ, ψ̄] =

∫
dDx ψ̄(x) (m + i6 ∇(A)) ψ(x) (98)

and take the massless limit at the end. Here and below the Dirac operator 6 ∇(A) is of the
same form as (50). In the present context the general objects (83)–(86) specialize as follows:

Z[H, H̄] =

∫
DΨDΨ exp

{
−Σ[Ψ, Ψ] +

∫
dD+1|2z H̄Ψ + ΨH

}
, (99)

Σ[Ψ, Ψ] =

∫
dD+1|2z

[
DΨ (m− i6 ∇(A))−1 DΨ

−D Ψ (m− i6 ∇(A))−1 DΨ + iΨ (m + i6 ∇(A)) Ψ
]

. (100)

Here the stochastic fermionic superfield has the component decomposition:

Ψ(z) = ψ(τ, x) + θ̄ ω(τ, x) + ω̄(τ, x) θ + θ̄θ Ω(τ, x) (101)

and similarly for Ψ(z), where ω(τ, x) , ω̄(τ, x) and Ω(τ, x) are bosonic/fermionic auxiliary
stochastic fields which are irrelevant in the equilibrium limit.

Equivalently, the stochastic quantization of (massive) fermions in a background gauge
field in terms of stochastic Langevin equations reads:

∂τψ(τ, x) = −[6 ∇2(A) + m2]ψ(τ, x) + η(τ, x) (102)

∂τ ψ̄(τ, x) = −[6 ∇2(A) + m2]ψ̄(τ, x) + η̄(τ, x)

〈η(τ, x)η̄(τ ′, x′)〉 = 2δΛ(τ − τ ′)[m− i6 ∇(A)]δ(D)(x− x′) (103)

Here the standard stochastic regularization of Breit-Gupta-Zaks [32] for the correlator of
the fermionic random “white noise” η(τ, x) is employed via δΛ(τ) → δ(τ) for Λ → ∞ and
∂k

τ δΛ(τ)
∣∣
τ=0

= 0 for k = 0, . . . L− 1 (cf. Eqs.(96)–(97)).
Stochastic Noether theorem (88)–(91) yields the following axial (chiral) stochastic super-

space current conserved when m = 0 (classical axial symmetry):

J
(D+1) a
θ (z) = iΨT aγ(D+1)

[
(m− i6 ∇(A))−1 DΨ

]− i
[
D Ψ (m− i6 ∇(A))−1]T aγ(D+1)Ψ (104)

J
(D+1) a

θ̄
(z) = −iΨT aγ(D+1)

[
(m− i6 ∇(A))−1 DΨ

]
+ i

[
D Ψ (m− i6 ∇(A))−1]T aγ(D+1)Ψ(105)

J (D+1) a
µ (z) = ΨT a(−iγµ)γ(D+1)Ψ

+
[
D Ψ (m− i6 ∇(A))−1]T aγµγ

(D+1)
[
(m− i6 ∇(A))−1 DΨ

]

− [
DΨ (m− i6 ∇(A))−1]T aγµγ

(D+1)
[
(m− i6 ∇(A))−1 DΨ

]
. (106)
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Here γ(D+1) = γ0 . . . γD−1 is “γ5” in D=even dimensions. The classical (i.e., before taking
stochastic averages (87)) conservation law for (104)–(106) reads:

DJ
(D+1) a
θ + DJ

(D+1) a

θ̄
+∇ab

µ (A)J (D+1) a
µ = −2mΨT aγ(D+1)Ψ

+2im
[
D Ψ (m− i6 ∇(A))−1]T aγ(D+1)

[
(m− i6 ∇(A))−1 DΨ

]

−2im
[
DΨ (m− i6 ∇(A))−1]T aγ(D+1)

[
(m− i6 ∇(A))−1 DΨ

]
(107)

In order to calculate the stochastic average, i.e., the quantum version of (107) we need the
regularized form of the free propagator for the stochastic fermionic superfield. The general
formula (92) specializes in this case as follows:

〈
Ψ(z) Ψ(z′)

〉(0)

reg
= − i

2
(m− i 6 ∇(A)) ρΛ(τ − τ ′) e−(m2+6∇2(A))|τ−τ ′|(x, x′)δ(2)(θ − θ′)

+
1

2

[
D , D

]
δ(2)(θ − θ′)

∫ ∞

|τ−τ ′|
dα ρΛ(α) exp

[−α
(
m2 + 6 ∇2(A)

)]
(x, x′) (108)

Due to the general property of stochastic averages (87) we find that only the lowest
component in the θ-expansion of the stochastic superspace axial current divergence survives
in the equilibrium limit. Also due to the manifest preservation of stochastic supersymmetry
in the stochastic averages we have:

D
〈
J

(D+1) a

θ̄
(z)

〉
= 0 , D

〈
J

(D+1) a
θ (z)

〉
= 0 (109)

Therefore, in the stochastic average of (107) only the last term on the left hand side survives:

∇ab
µ (A)

〈
J (D+1) a

µ (z)
〉

= ∇ab
µ (A)

〈
ψ̄(x, τ)T a(−iγµ)γ(D+1)ψ(x, τ)

〉
(110)

Upon using (108) we get:

〈
J (D+1) a

µ (z)
〉

=

∫ ∞

0

dα ρΛ(α) Tr
[
T aγµγ

(D+1) (im + 6 ∇(A)) e−α{m2+6∇2(A)}(x, x) (111)

and for the covariant divergence:

∇ab
µ (A)

〈
J (D+1) a

µ (z)
〉

= −4

∫ ∞

0

dτ δΛ(τ)e−τm2

tr[T aγ(D+1)e−τ 6∇2(A)(x, x)] (112)

+2m2

∫ ∞

0

dτ e−τm2

tr[T aγ(D+1)e−τ 6∇2(A)(x, x)]

∫ τ

−τ

dτ ′δΛ(τ ′) , (113)

where δΛ(τ) is related to δΛ(τ) as in (97).
Removing stochastic regularization Λ →∞ and taking zero-mass limit m → 0 the above

equation reduces to:

∇ab
µ (A)

〈
J (D+1) a

µ (z)
〉

= −2 Tr
[
T aγ(D+1)Φ

(D)
0 (6 ∇2(A); x)

]
(114)

+ lim
m→0

2

∫ ∞

0

dα e−α Tr
[
T aγ(D+1)e−(α/m2)6∇2(A)(x, x)

]
. (115)
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Here Φ
(D)
0 (6 ∇2(A); x) is the zero-order Seeley coefficient in the Seeley-De Witt expansion (57)

for the heat kernel in (112), whose explicit form can be easily derived using the formalism
described in Appendix A of [B1] (see also [34]):

Tr
[
T aγ(D+1)Φ

(D)
0 (6 ∇2(A); x)

]
=

εµ1...µD

(D/2)! (4π)D/2
Tr

[
T aFµ1µ2 . . . FµD−1µD

]
. (116)

The Abelian part (a = 0) of the last term in (116) equals CD/2(F ; x) – the density of the
D/2-th Chern topological characteristic class (see e.g. [31]).

For the zero-mass limit of the last term in (115) using the formulas from Appendix B of
[B1] we find:

2 Tr
[
T aγ(D+1)Π

6∇(A)
0 (x, x)

]
= index( 6 ∇(A); x) , (117)

where Π
6∇(A)
0 is the projector of zero-modes of the Dirac operator 6 ∇(A) and index( 6 ∇(A); x)

is the corresponding index density (see e.g. [34]).
Collecting (116) and (117) we recover from (114)–(115) the correct covariant form of the

Abelian and non-Abelian chiral anomalies within the SQS framework:

∂µJ (D+1) a=0
µ = 2

[
index( 6 ∇(A); x)− CD/2(F ; x)

]
, (118)

∇ab
µ J (D+1) b

µ = 2 tr[T aγ(D+1)Π
6∇(A)
0 (x, x)]

−2[(D/2)!(4π)D/2]−1εµ1...µD tr[T aFµ1µ2 . . . FµD−1µD
] , (119)

where in the last equation a, b = 1, . . . , n2 − 1.
Further details are contained in [B1,B5,B6,B8,B9].

3.5 Topological Quantization of Physical Parameters and Global
Anomalies in Stochastic Quantization

Another crucial test for the self-consistency of SQS is to show that SQS correctly reproduces
in the equilibrium limit the topological quantization of physical parameters, which is an
inherent non-perturbative feature of various physically relevant field theory models such as:

(i) Chiral field model with a Wess-Zumino term in D=even space-time dimensions [35]:

S
(1)
ξ = Schiral[U ] + iξΓWZ[U ] (120)

where:

Schiral[U ] = −1

2
f 2

∫
dDx Tr

[
L2

µ(U)
]

, Lµ(U) ≡ U−1∂mU , (121)

ΓWZ[U ] = cD+1

∫ ∞

0

dxD+1

∫
dDx εµ1...µD+1 Tr

[
Lµ1(Ũ) . . . LµD+1

(Ũ)
]

, (122)

cD+1 ≡ −(i/2π)(D+2)/2 (D/2)! [(D + 1)!]−1 . (123)
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Here Ũ = Ũ(x, xD=1) is a continuation of U(x) to (D + 1) dimensions, such that Ũ(x, 0) =

U(x) and Ũ(x, xD+1) → 1l for xD+1 →∞.

(ii) Non-Abelian Yang-Mills gauge theories with Chern-Simmons terms in D=odd space-
time dimensions [36]:

S
(2)
ξ =

1

4ng2

∫
dDx Tr

[
F 2

µν(A)
]
+ iξW

(D)
Ch−S[A] (124)

where:

W
(D)
Ch−S[A] =

∫
dDx εµ1...µD Tr

[
bDAµ1Fµ2µ3 . . . FµD−1µD

− . . . + (−i)DcDAµ1 . . . AµD

]
(125)

Here:

bD ≡ 2
[(D + 1

2

)
! (4π)(D+1)/2

]−1

(126)

and cD is the same as in (123)

Due to the non-trivial topology of the configuration spaces of field theories (120) and
(124), namely, due to the existence of closed non-contractable loops, the corresponding actions
are multi-valued along these loops (shifted by integers) and, therefore, the parameters ξ must
be quantized as follows:

ξ = 2πk , k ∈ Z (127)

Let us now quantize the above models with multi-valued actions within the stochastic
scheme. In generic notations the corresponding stochastic Langevin equations read (cf. (81);
here we can choose K = 1l):

∂τϕη = −δSξ

δϕ

∣∣∣∣
ϕ=ϕη

+ η , 〈η(τ, x) η(τ ′, x′)〉 = 2δ(τ − τ ′) δ(D)(x− x′) . (128)

where:

Sξ[ϕ(·; 1)]− Sξ[ϕ(·; 0)] = iξN , N ∈ Z (129)

for every non-contractable closed contour C in the configuration space:

C =
{
ϕ(x; s) , 0 ≤ s ≤ 1 | ϕ(x; 0) = ϕ(x; 1) = ϕ(x)

}
. (130)

Specifically, the Langevin equation (128) acquires the following form for model (120):

U−1∂τU = −f 2∂µLµ(U)− iξ(D + 1)cDεµ1...µDLµ1(U) . . . LµD
(U) + η (131)〈

ηa(τ, x) ηb(τ ′, x′)
〉

= 2δabδ(τ − τ ′) δ(D)(x− x′) , η = iT aηa

and for model (124):

∂τA
a
µ = − 1

g2
(∇νFµν)

a − 1

2
iξ(D + 1)bDεµν1...νD−1 Tr

[
T aFν1ν2 . . . FνD−2νD−1

]
+ ηa

µ (132)

〈
ηa

µ(τ, x) ηb
ν(τ

′, x′)
〉

= 2δabδµνδ(τ − τ ′) δ(D)(x− x′)
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It is obvious from (131)–(132), that unlike the multi-valued actions Sξ[ϕ], their functional

derivatives
δSξ

δϕ
defining the “drift” force in the stochastic Langevin equations (128) are

smooth single-valued functionals for any value of ξ. Therefore, (128) yield well-defined
(after appropriate stochastic regularization, cf. above) stochastic averages for any ξ, i.e.,
no topological quantization (127) of ξ is enforced at finite stochastic time τ :

〈F [
ϕ(ξ)(τ, ·)]〉

η
=

∫
DϕF [ϕ]Pξ[ϕ; τ ] . (133)

Here F is arbitrary (gauge-invariant) functional and Pξ[ϕ; τ ] is the Fokker-Planck distribu-

tion corresponding to the solutions ϕ
(ξ)
η (τ, x) of the stochastic Langevin Eqs.(128):

Pξ[ϕ; τ ] =

∫
Dη exp

{
−

∫
dDx dτ η2

} ∏
x

δ
(
ϕ(x)− ϕ(ξ)

η (τ, x)
)

(134)

Thus, the important question arises as to how SQS enforces the topological quantization
(127) of ξ in the equilibrium limit. The answer is given by observing that the equilibrium
Fokker-Planck distribution Pξ[ϕ] must satisfy the following equation:

( δ

δϕ(x)
+

δSξ[ϕ]

δϕ(x)

)
Pξ[ϕ] = 0 , Pξ[ϕ] = lim

τ→∞
Pξ[ϕ; τ ] , (135)

with the obvious solution:

Pξ[ϕ] = const exp
{
−

∫

C(ϕ,ϕ0)

δSξ/δϕ
}

(136)

Here C(ϕ,ϕ0) denotes an open path in the field configuration space:

C(ϕ,ϕ0) =
{

ϕ(x; s) | ϕ(x; 0) = ϕ0(x)−− some reference point , ϕ(x; 1) = ϕ(x)
}

(137)

and the functional line integral in (136) is defined as:

∫

C(ϕ,ϕ0)

(. . .) =

∫ 1

0

ds

∫
dDx ∂sϕ(x; s) (. . .) . (138)

Due to the multi-valuedness (129)–(130) of Sξ[ϕ], the equilibrium solution (136) for the
Fokker-Planck distribution is in general path-dependent, i.e., Pξ[ϕ] is not well-defined for
generic values of ξ, unless ξ obeys the quantization condition (127) in which case:

Pξ[ϕ] = const exp
{−Sξ[ϕ]

}
( ξ = 2πN ) (139)

becomes well-defined single-valued (Euclidean) functional integral weight. Further details
are contained in [B7,B9].
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4 Super-Poincare Covariant Quantization of Supersym-

metric Strings

4.1 Canonical Hamiltonian Formulation of Green-Schwarz Super-
strings: Covariant Separation of First and Second Class Con-
straints

Realization of the importance of manifest space-time supersymmetry for superstring theory
(anomaly cancellations, ultraviolet finiteness, vanishing cosmological constant, etc. [24])
attributed a fundamental role to the Green-Schwarz formulation of superstrings [37, 24].
There exist several types of Green-Schwarz superstrings, the most important being type
IIB (with N = 2 chiral space-time supersymmetry), type IIA (with N = 2 non-chiral space-
time supersymmetry) and heterotic (with N = 1 space-time supersymmetry) Green-Schwarz
superstrings. For simplicity here we shall concentrate on the last mentioned type.

The standard Lagrangian form of the heterotic Green-Schwarz superstring (in flat D = 10
embedding space-time) reads:

Sheterotic
GS =

∫
dτ dξ

√−γ
[
−1

2
γmn∂mXµ∂nXµ − 2i

(
P nm
− ∂mXµ

)
(θσµ∂nθ)

+
1

2
γmn (θσµ∂nθ) (θσµ∂mθ) + Sinternal , (140)

where Sinternal is the action for the left-moving modes describing the internal string degrees
of freedom. The precise form of Sinternal does not affect the present analysis and, therefore,
it will be suppressed. The objects appearing in (140) have the following meaning. (τ, ξ)
are the standard string world-sheet parameters; ∂0 ≡ ∂/∂τ , ∂1 ≡ ∂/∂ξ; γmn (m,n = 0, 1)
denotes the intrinsic Riemannian world-sheet metric. The string bosonic coordinates Xµ

(µ = 0, 1, . . . , 9) transform as D = 10 vectors and D = 2 world-sheet scalars. The anti-
commuting string coordinates θα (α = 1, . . . , 16) transform as a left-handed Majorana-Weyl
SO(1, 9) spinor and as D = 2 world-sheet scalars. Pmn

− denotes D = 2 chiral projector:

Pmn
± ≡ 1

2

(
γmn ± εmn

√−γ

)
(141)

Passing to the Hamiltonian formalism via the standard way of introducing the canonically
conjugated momenta (Pµ , pα

θ ) the action (140) acquires the form:

Sheterotic
GS =

∫
dτ dξ [Pµ∂τX

µ + pα
θ ∂τθ − ΛLTL − ΛRTR − ΛαDα] (142)

Here ΛL, ΛR, Λα are Lagrange multipliers for the corresponding Hamiltonian constraints.
TL,R are the left (right) reparametrization (Virasoro) constraints (primes indicate differenti-
ation with respect to the space-like worldsheet parameter ξ):

TL ≡
(
Pµ −X ′

µ

)2
, TR ≡ Π2 − 4iθ′αDα , (143)
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where:
Πµ ≡ Pµ + X ′

µ + 2iθσµθ
′ . (144)

The spinorial fermionic constraints Dα appearing in (142) are:

Dα ≡ −ipα
θ −

(
P µ + X ′

µ + iθσµθ′
)
(σµθ)

α (145)

The Poisson-bracket algebra of the constraints (143)–(145) takes the form:

{TL,R(ξ), TL,R(η)}PB = ±8
[
TL,R(ξ) δ′(ξ − η) +

1

2
T ′

L,R(ξ)δ(ξ − η)
]

, (146)

{TL(ξ), TR(η)}PB = 0 , {Dα(ξ), TR(η)}PB = −4Dα(η) δ′(ξ − η) , (147){Dα(ξ), Dβ(η)
}

PB
= 2iδ(ξ − η) (σµ)αβΠµ(ξ) (148)

From (146)–(148) one finds that TL,R (143) are first class bosonic constraints, whereas Dα is
a mixture of 8 first class and 8 second class fermionic constraints (the 16× 16 matrix on the
right hand side of (148) has rank 8 on the constraint surface). This is the famous problem
of Lorentz non-covariant mixing of first and second class constraints in the Green-Schwarz
superstring formulation: both 8 first and 8 second class parts of Dα cannot be represented
as covariant Lorentz spinor objects since the lowest Lorentz-spinor dimensionality in D = 10
space-time is 16.

In our series of papers [C1–C13] we have provided a detailed and systematic solution to
the above notorious problem. The covariant separation of the first and second class parts
of Dα (145) is achieved through introduction of a set of two auxiliary “pure gauge” bosonic

Majorana-Weyl spinor variables v
± 1

2
α together with a further set of 7 auxiliary “pure gauge”

vector variables up
µ (p = 1, . . . , 7) which are simultaneously reparametrization scalars on the

string world-sheet.
Before proceeding let us note the following remarkable properties involving the auxiliary

bosonic spinor variables v
± 1

2
α which are due to the famous D = 10 Fierz identity:

(σµ)αβ(σµ)γδ + (σµ)βγ(σµ)αδ + (σµ)γα(σµ)βδ = 0 . (149)

As a result of (149) the following 3 vectors, bilinear composites of the auxiliary bosonic
spinors:

u+
µ ≡ v+ 1

2 σµv
+ 1

2 , u−µ ≡ v−
1
2 σµv

− 1
2 , u8

µ ≡
√

2v+ 1
2 σµv

− 1
2 (150)

obey the orthogonality identities:

(
u±

)2
= 0 ( lightlike ) , u8

µu
±µ = 0 ,

(
u8

)2
+ u+

µ u−µ = 0 (151)

The “internal” index p of up
µ transforms as a SO(7)-vector, whereas the internal indices

±1
2

of v
± 1

2
α transform as SO(1, 1) charge ±1

2
. Furthermore, the internal index a of the

combination ua
µ ≡

(
up

µ, u
8
µ ≡

√
2v+ 1

2 σµv
− 1

2

)
(a = (p, 8) = 1, . . . , 8) transforms as SO(8)-

vector.
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With the help of the auxiliary variables
(
v
± 1

2
α , up

µ

)
the fermionic constraints Dα (145) are

covariantly separated into independent first-class part (generators of the fermionic “kappa”-
symmetry):

D+ 1
2
a ≡ v+ 1

2 σµua
µσ

νΠνD , a = 1, . . . , 8 , (152)

and independent second class part:

G+ 1
2
a ≡ 1

2
v−

1
2 ua

µσ
[µσν]u+

ν D , a = 1, . . . , 8 , (153)

where u+
µ , u8

µ are the bilinear composites (150).

4.2 Covariant Formulation of Green-Schwarz Superstrings in Ex-
tended Phase Space

As mentioned above, the auxiliary bosonic spinor and vector world-sheet scalar variables(
v
± 1

2
α , up

µ

)
must be “pure-gauge” degrees of freedom not altering the dynamics of the orig-

inal Green-Schwarz superstring (140). Therefore, their dynamics must be governed by a
Hamiltonian, which contains only a linear combination of independent first-class constraints
equal in number with the number (=102) of the auxiliary variables.

The resulting action for the Green-Schwarz (heterotic) superstring in the extended phase
space with canonical coordinates and their canonically conjugated momenta:

(
Xµ , θα , v

± 1
2

α , up
µ

)
,

(
Pµ , pα

θ , π
∓ 1

2
α

v , πp,µ
u

)
(154)

reads [C12,C13]:

S̃ = S̃heterotic
GS + Sauxiliary . (155)

Here:

S̃heterotic
GS =

∫
dτ dξ

[
Pµ∂τX

µ + pα
θ ∂τθ − ΛLT̃L − ΛRTR − Λ

− 1
2

a D+ 1
2
a −M

− 1
2

a G+ 1
2
a
]

, (156)

where now the left Virasoro constraint TL (143) acquires contribution from the auxiliary
variables:

T̃L ≡
(
Pµ −X ′

µ

)2 − 4
(
πp

uu
′
p + π

∓ 1
2

v (v±
1
2 )′

)
, (157)

TR is the same as in (143), and Λ
− 1

2
a , M

− 1
2

a denote the Lagrange multipliers for the covariantly
disentangled fermionic constraints (152)–(153).

The part of the action governing the “pure-gauge” dynamics of the auxiliary variables is:

Sauxiliary =

∫
dτ dξ

[
π
∓ 1

2
v ∂τv

± 1
2 + πp

u∂τup − ΛMNDMN −MABΨAB
]

, (158)
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where ΛMN , MAB are Lagrange multipliers corresponding to the first-class constraints DMN ,
ΨAB on the auxiliary variables. The latter constraints have a transparent geometrical mean-
ing. First, ΨAB represent 50 orthonormality constraints (A,B = p, 8, +,−):

Ψpq ≡ up
µu

q µ − δpq = 0 , Ψp8 ≡ up
µu

8 µ = 0

Ψp± ≡ up
µu

±µ = 0 , Ψ+− ≡ u+
µ u−µ + 1 = 0 (159)

(recall that u8, u± are bilinear composites (150)). The constraints (159) imply that on-shell
the auxiliary variables form an orthonormal frame of ten SO(1, 9) vectors (the “missing”
orthonormality conditions are automatically fulfilled off-shell by construction (151) due to
the D = 10 Fierz identities (149)).

The remaining 52 constraints DMN (M, N = p, 8, +,−) imply that the dynamics is
invariant (a) under local SO(1, 9) rotations of the orthonormal frame up, u8, u±, and (b)

under transformations of the bosonic spinors |± 1
2 , which leave this frame invariant (the latter

gauge invariance being expressed by the constraints D̃8p below):

Dpq ≡ −upπq
u + uqπp

u −
1

2

∑
+,−

v±
1
2 up

µu
q
νσ

[mσn]π
∓ 1

2
v , (160)

D8p ≡ −u8πp
u −

1

2

∑
+,−

v±
1
2 u8

µu
p
νσ

mσnπ
∓ 1

2
v , (161)

D+p ≡ −u+πp
u −

1

2

∑
+,−

v±
1
2 u+

µ up
νσ

[mσn]π
∓ 1

2
v , (162)

D−p ≡ −u−πp
u −

1

2

∑
+,−

(
v±

1
2 u−µ up

νσ
[mσn]π

∓ 1
2

v , (163)

D+8 ≡ −1

2

∑
+,−

v±
1
2 u+

µ u8
νσ

[mσn]π
∓ 1

2
v , D−8 ≡ −1

2

∑
+,−

v±
1
2 u−µ u8

νσ
[mσn]π

∓ 1
2

v , (164)

D−+ ≡ −1

2

∑
+,−

v±
1
2 u−µ u+

ν σ[mσn]π
∓ 1

2
v , D̃8p ≡ −1

2

∑
+,−

(±)v±
1
2 u8

µu
p
νσ

[mσn]π
∓ 1

2
v . (165)

Let us stress once again that all constraints in (156),(158) except G+ 1
2
a (153) are first class.

Further details are contained in [C12,13].
Because of the geometric meaning of the constraints (159)–(165) on the auxiliary variables(

v
± 1

2
α , up

µ

)
we call our covariant formulation of Green-Schwarz superstrings in extended

phase space (154) –“covariant spinor-harmonic superspace formalism”.

4.3 Covariant Quantum Green-Schwarz Superstrings: Path Inte-
gral

Taking into account the results in the previous subsection we find that the path integral for
the covariantly quantized (heterotic) Green-Schwarz superstring will contain the following
elements [C12,13]:
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(a) functional integration over the canonical variables
(
Xµ , θα , v

± 1
2

α , up
µ

)
and their

canonically conjugated momenta
(
Pµ , pα

θ , π
∓ 1

2
α

v , πp,µ
u

)
;

(b) functional integration over the Lagrange multipliers ΛL, ΛR, Λ−
1
2
a, M− 1

2
a, ΛMN , MAB;

(c) delta-functions imposing the gauge-fixing conditions χ(...) for the first class con-

straints:
(
T̃L, TR

) ↔ χ
(rep)
L,R (reparametrization (Virasoro)), D+ 1

2
a ↔ χ

(κ)
a (fermionic “kappa”-

symmetry), ΨAB ↔ χ
(norm)
AB (orthonormality for auxiliary variables), DMN ↔ χ

(rot)
MN (local

frame rotations for auxiliary variables);
(d) Faddeev-Popov “ghost” determinants of the matrices formed by the Poisson brackets

among the first class constraints and their respective gauge fixing conditions: ∆
(rep)
FP , ∆

(κ)
FP,

∆
(norm)
FP and ∆

(rot)
FP ;

(e) inverse square root of the determinant of the Poisson brackets among the second-class

constraints G+ 1
2
a (153), which equals det−4

[
u+

µ Πµ
]

(Πµ is the same as in (144)).

In our covariant formalism we are able to impose a Lorentz-invariant gauge fixing condi-
tion for the fermionic “kappa”-gauge symmetry:

δ
(
χ(κ)

a

) ≡ δ
(
v+ 1

2 ua
µσ

µθ
)

, (166)

which implies a local Faddeev-Popov determinant:

∆
(κ)
FP = det−8

[
u+

µ Πµ
]

. (167)

For χ(rep) we take the standard conformal gauge.
For χ

(norm)
AB ≡ ΩAB we choose:

Ωpq =
1

2
π(p

u uq) , Ωp8 = πp
uu

8 , Ωp± = πp
uu

± , Ω+− =
1

4

(
v+ 1

2 π
− 1

2
v + v−

1
2 π

+ 1
2

v

)
, (168)

(recall that u8, u± are bilinear composites (150)), and for χ
(rot)
MN we take:

χ
(rot)
8p = Λ8p , χ

(rot)f8p
= Λ̃8p , χ

(rot)
+− = Λ+− , χ(rot)

pq = χSO(7) , (169)

the latter meaning that we take some fixed choice for the seven-frame spanned by up
µ.

Thus, taking into account (a)-(e) above and (166)–(169), the hamiltonian path integral
acquires the form [C12]:

Z =

∫
DXµDθαDuDvDPµDpα

θ DπuDπv DΛLDΛRDΛ−
1
2
aDM− 1

2
aDΛMN DMAB

× exp
{

iS̃
}

δ
(
χ(rep)

)
δ
(
v+ 1

2 ua
µσ

µθ
)
δ
(
ΩAB

)
δ
(
χ(rot)

)
∆

(rep)
FP ∆

(norm)
FP ∆

(rot)
FP det−12

[
u+

µ Πµ
]

. (170)

In [C12,C13] we have systematically performed the passage from the Hamiltonian to the
Lagrangian form of the functional integral (170). In the course of derivation we make change
of fermionic space-time variables:

θα −→ θ±
1
2
a = v±

1
2 ua

µσ
µθ (171)
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with a subsequent nonlinear rescaling:

θ−
1
2
a −→ ψa = −2

(
∂z̄X

µu+
µ

) 1
2 θ−

1
2
a (172)

(recall again that that u8, u± are bilinear composites (150)). As a final result we obtain
quadratic covariant gauge-fixed path integral in terms of a finite number of conformal fields
and ghosts:

Z =

∫
DXµDψaDuDvD(πu)zD(πv)zDbz DczzDb̄z̄ Dc̄z̄z̄Dη̄zDηDζ̄zDζ

× exp{iSbilinear
GS + Sinternal} , (173)

where:

Sbilinear
GS = −2

∫
dτdξ [∂zX

µ∂z̄Xµ + iψa∂zψa + bz∂z̄czz + b̄z̄∂z c̄z̄z̄

+(π
∓ 1

2
v )z∂z̄v

± 1
2 + (πp

u)z∂z̄up + η̄MN
z ∂z̄ηMN + ζ̄AB

z ∂z̄ζAB] . (174)

Here (b, c) are the standard reparametrization ghosts, whereas
(
ζ̄ , ζ

)
and (η̄, η) are the ghosts

for the orthonormality (159) and frame-rotation (160)–(165) gauge constraints, respectively.
Moreover we have explicitly shown that apart from the standard conformal anomalies,

which cancel in the present D = 10 case, there are no further anomalies in (173). Further
details are contained in [C11,C12,C13].

Eqs.(173)–(174) are the basic starting point for calculations of Green-Schwarz superstring
amplitudes in a manifestly super-Poincare covariant formalism upon inserting in (173) the
appropriate covariant vertex operators which in general will depend also on the auxiliary

variables
(
v
± 1

2
α , up

µ

)
. For further details, see [C8,C10].

4.4 Action Principle for Over-Determined Systems of Non-Linear
Field Equations

The zero-mode (point-particle) limit of the Green-Schwarz superstring (140)–(142) is the
Brink-Schwarz superparticle (with N = 1 space-time supersymmetry) whose action reads
(in Hamiltonian form):

SBS =

∫
dτ

[
pµ∂τx

µ + pα
θ ∂τθa − λp2 − λαdα

]
, (175)

dα ≡ −ipα
θ− 6 pαβθβ ,

{
dα, dβ

}
PB

= 2i6 pαβ , (176)

the fermionic spinor constraint dα again being a Lorentz non-covariant mixture of first and
second class constraints. Our formalism developed in the previous two subsections can natu-
rally be applied for super-Poincare covariant quantization of the Brink-Schwarz superparticle
as a simple limiting case of the Green-Schwarz superstring (see next subsection).

Indeed, we have shown in [C5,C10] that second quantization of Brink-Schwarz N = 1
superparticle in D = 10 space-time dimensions yields a covariant off-shell superspace formu-
lation for the linearized version of the D = 10 N = 1 super-Yang-Mills gauge theory. Similar
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results have been obtained in [C3] for the second quantized Brink-Schwarz N = 2 super-
particle in D = 10 as a covariant off-shell superspace formulation for the linearized D = 10
type IIB supergravity. See also [C2] for second quantization of D = 4 N = 1, 2 superparti-
cles yielding (linearized) superfield theories of N = 1 chiral and vector supermultiplets and
N = 2 matter and super-Maxwell multiplets, respectively.

From a mathematical point of view, the quantum first-class Dirac constraint equations
constitute a consistent overdetermined set of N (= number of Dirac first class constraint)
linear (matrix) equations for one (vector-valued) wave function, i.e., N classical (matrix)
free-field equations for one classical (vector-valued) field. Similar structure will arise in the
full non-linear field theory. In particular, the well-known geometrical (Nilsson’s) constraints
[38] on the superfield gauge potential in the full non-linear D = 10 N = 1 super-Yang-Mills
theory, which are in fact equivalent to the equations of motion, can be cast [C10] in the
above mentioned form of a consistent overdetermined system of non-linear field equations by
exclusive use of our spinor-harmonic superspace formalism.

In our works [C9,C10] we have proposed a general scheme for constructing an action
principle for arbitrary consistent overdetermined systems of non-linear field equations. As a
main application the latter scheme combined with our spinor-harmonic superspace formalism
yields a manifestly covariant action for the D = 10 N = 1 super-Yang-Mills theory in terms
of unconstrained off-shell superfields.

Here below we will describe the main steps of the above mentioned general scheme. Let
us consider the following general overdetermined system of N non-linear equations:

LA(φ|z) ≡ LAφ(z) + VA(φ|z) = 0 , A = 1, . . . ,N , (177)

VA(φ|z) ≡
∑
n≥2

∫
dz1 . . . dznV

(n)
A (z; z1, . . . , zn) φ(z1) . . . , φ(zn) . (178)

In (177) the function (“field”) φ(z) is defined on a (graded) linear space R and it takes values
in another (graded) vector space U , i.e., φ(z) has a vector index (φa(z)) and may contain
both bosonic and fermionic components. LA are (graded) linear differential operators of
at most second degree and are, correspondingly, matrices

(
LA ≡

(
Lab

A

))
in the vector space

U . Similarly VA(φ|z) ≡ ([VA(φ|z)]a) are also vectors in U . The vector indices (a, b) will be
suppressed for brevity.

The necessary conditions for consistency of the overdetermined system (177) are obtained
by repeated application of (graded) antisymmetrized products of the linear operators LA on
LB(φ|z) (177) and by requiring the result to vanish when Eqs.(177) are fulfilled. The first
consistency condition yields for the linear and non-linear parts of (177), respectively:

[
LA, LB

}
≡ LALB + (−1)εAεB+1LBLA = fC

ABLC , (179)

LAVB(φ|z) + (−1)εAεB+1LBVA(φ|z)− fC
ABVC(φ|z)

=

∫
dz′

[δVB(φ|z)

δφ(z′)
LA(φ|z′)(−1)εAεB+1 δVA(φ|z)

δφ(z′)
LB(φ|z′)

]

= 0 (on the surface of Eq.(177)) . (180)
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In (179)–(180) fC
AB are in general linear differential operators and εA,B are the Grassmann

parities of LA,B. In Eq.(180) the operators LA act on VB(φ|z) as on functions of z.
The next level consistency condition gives using (179)–(180):

[
f

(2) DE
ABC (−1)εDfG

ED

]
antisymm(A,B,C)

VG(φ|z) = 0 , (181)

where f
(2) DE
ABC are in general operators defined through:

f
(2) DE
ABC LE =

(
(−1)εB+εD+1

{
(−1)εDεC

[
fD

AB, LC

]
+ fG

ABfD
GC

})
antisymm(A,B,C)

, (182)

and “antisymm (. . .)” means graded antisymmetrization. For most interesting systems, in
particular for the case at hand (D = 10, N = 1 super-Yang-Mills theory), it turns out that:

f
(2) DE
ABC = 0 , (183)

i.e., there are no further independent consistency conditions for the overdetermined system
(177) apart from (179)–(180).

In what follows we will employ the “ghost” formalism of Batalin-Fradkin-Vilkovisky
(BFV) [39], which allows us to rewrite the whole consistent overdetermined system (177)
of N (matrix) field equations as a single (matrix) equation in terms of a (vector-valued)
field Φ(z, η) depending on additional “ghost” variables collectively denoted by η ≡ (ηA)
(A = 1, . . . ,N ):

Φ(z, η) = φ(z) +
∑
n≥1

1

n!
ηA1 . . . ηAnφ̃A1...An(z) , (184)

where ηA has opposite Grassmann parity with respect to LA: ε(ηA) = εA + 1.
The new single (matrix) equation for Φ(z, η) replacing the system (177) reads:

Q(Φ|z, η) ≡ Q0Φ(z, η) + V(Φ|z, η) = 0 , (185)

where:

Q0 = ηALA +
1

2
(−1)εBηBηCfA

CB

∂

∂ηA
(186)

V(Φ|z, η) =
∑
n≥2

∫
dz1 . . . dznηAV

(n)
A (z; z1, . . . , zn) Φ(z1, η) . . . , Φ(zn, η) , (187)

the kernels V
(n)
A (. . .) being the same as in (178). The original overdetermined system (177)

is contained in (185) as the lowest order term in the “ghost” η- expansion of Q(Φ|z, η).
Note that Q0 (186) entering (185) is the BRST charge corresponding to the algebra (179),

where the operators LA may be viewed as quantized Dirac first-class Hamiltonian constraints.
Moreover, in the BFV language f

(2) DE
ABC is precisely the so called second order BFV structure

function [39] and the condition (183) means that the corresponding constrained Hamiltonian
system is BFV first-rank (no higher-order ghost terms in the BRST charge Q0 (186)).
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In [C9,C10] we have derived the following covariant action producing (185) as equation
of motion:

S =

∫
dz dη ĤΦ(z, η) Q(Φ|z, η) (188)

with notations as follows. The linear operator Ĥ is defined to fulfill (“T” denotes operator
transposition):

ĤT = Ĥ , QT
0 Ĥ = Ĥ Q0 (189)

A typical form of Ĥ is:

ĤΦ(z, η) = RΦ(ρ1z, ρ2η) , ρ1,2 = ±1,±i , (190)

where R is a matrix acting on vector indices of Φ(z, η) (see next subsection). The functional
Q(Φ|z, η) has the following explicit form:

Q(Φ|z, η) ≡ 1

2
Q0Φ(z, η) + V(Φ|z, η) , (191)

V(Φ|z, η) =
∑
n≥2

∫
dz1 . . . dzn

1

n + 1
ηAV

(n)
A (z; z1, . . . , zn) Φ(z1, η) . . . , Φ(zn, η) , (192)

with V
(n)
A (. . .) – the same as in (178) and (187).

In [C9,C10] we have also shown that the action (188) possesses Witten-type [40] gauge
symmetry:

δΛΦ(z, η) =

∫
dz′ dη′ Λ(z′, η′)

δQ(Φ|z, η)

δΦ(z′, η′)
. (193)

The original field φ(z) does not change under the gauge transformation (193).
Concluding this subsection let us emphasize that the action principle for arbitrary con-

sistent overdetermined systems of non-linear field equations proposed in our papers [C9,C10]
has an independent value by itself beyond the present context of covariant superstring quan-
tization.

4.5 Off-Shell Superspace D = 10 Super-Yang-Mills from a Covari-
antly Quantized Green-Schwarz Superstring

Here we shall illustrate the general scheme developed in the previous subsection by deriving
the off-shell superspace action for the linearized N = 1 super-Yang-Mills gauge theory in
D = 10 as a second quantization of the D = 10, N = 1 Brink-Schwarz superparticle (175).
About the detailed derivation of the off-shell superspace action for the full non-linear D = 10,
N = 1 super-Yang-Mills theory, see [C9,C10].

For a covariant quantization of the Brink-Schwarz superparticle we will use here a version
of our spinor-harmonic superspace formalism first proposed in [C6,C7] (see also [C10]). The
main idea is to further extend the phase space of the system by introducing additional
fermionic variables Ψa (a = 1, . . . , 8 – “internal” SO(8) index) which convert the original
fermionic constraint dα (176) (non-covariant mixture of first and second class constraints)
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into fully covariant first class ones d̂α (see (197) below). This idea was first proposed in
a different context in Refs.[41]. The main advantage of having an extended constrained
Hamiltonian system with first class constraints only is that, while preserving the physical
content of the original system, the passage from Poisson to Dirac brackets as a prerequisite
for quantization is avoided.

Before proceeding let us introduce the following short-hand notations which will turn
very useful in the sequel:

Ba ≡ ua
µB

µ , B± ≡ ua
µB

µ ≡ v±
1
2 σµB

mv±
1
2 , σab ≡ ua

µσ
[µσν]ub

ν , σ±a ≡ u±µ σ[µσν]ua
ν ,
(194)

where Bµ is an arbitrary D = 10 Lorentz vector.
The action of D = 10, N = 1 Brink-Schwarz superparticle (175) in the extended spinor-

harmonic superspace formalism reads [C6,C7,C10]:

S̃BS =

∫
dτ

[
pµ∂τx

µ + pα
θ ∂τθa + iΨa∂τΨa − λp2 − λαd̂α

]
+ Ŝauxiliary , (195)

Ŝauxiliary =

∫
dτ

[
pµ

u,a ∂τu
a
µ + p

− 1
2
α

v ∂τv
+ 1

2
α + p

+ 1
2
α

v ∂τv
− 1

2
α

−λabD̂
ab − λ+−D−+ − λ−a D+a − λ+

a D̂−a
]

. (196)

The explicit expressions for the first class constraints entering (195)–(196), apart from the
standard reparametrization constraint p2, are as follows:

d̂α = dα (Eq.(176)) + (p+)−
1
2

( 6 pσ+σav−
1
2

)α
Ψa , (197)

D−+ =
1

2

(
v+ 1

2
∂

∂v+ 1
2

− v−
1
2

∂

∂v−
1
2

)
, (198)

D+a = u+
µ

∂

∂uµ a

+
1

2
v−

1
2 σ+σa ∂

∂v−
1
2

, (199)

D̂−a = D−a − pb

p+
R̂ab , D−a ≡ u−µ

∂

∂uµ a

+
1

2
v+ 1

2 σ−σa ∂

∂v+ 1
2

, (200)

where:

R̂ab ≡ 1

4

(
v−

1
2 σcσ

[aσb]σ+σdv
− 1

2

)
ΨcΨd , (201)

and:
D̂ab = Dab + R̂ab (202)

with:

Dab ≡ ua
µ

∂

∂uµ b

− ub
µ

∂

∂uµ a

+
1

2

(
v+ 1

2 σ[aσb] ∂

∂v+ 1
2

+ v−
1
2 σ[aσb] ∂

∂v−
1
2

)
. (203)

From (198)–(203) one immediately recognizes D̂ab, D−+ as generators of “internal”

SO(8) × SO(1, 1), whereas D+a, D̂−a are recognized as the coset generators corresponding
to SO(1, 9)/SO(8) × SO(1, 1). Both terms entering (202) may be interpreted as harmonic
“orbital” and harmonic “spin” SO(8) rotations.
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The quantum counterpart of the classical graded Poisson bracket for the auxiliary fermi-
onic variables

{
Ψa, Ψb

}
PB

= −iδab is the anticommutator:

{
Ψa, Ψb

}
= δab , (204)

meaning that the quantized Ψa are represented as 16× 16 Dirac SO(8) Γ-matrices:

Ψa =
1√
2
Γa

8 =
1√
2

(
0 (γa)bc

(γ̃a)bc 0

)
(205)

where:
(γa)bc ≡

√
2v+ 1

2 σbσ
aσcv

− 1
2 , (γ̃a)bc ≡

√
2v−

1
2 σbσ

aσcv
+ 1

2 . (206)

Therefore, the wave function:

φ(z) ≡ φ
(
xµ, θα, ua

µ, v
± 1

2
α

)
(207)

will be 16-component vector with upper fermionic and lower bosonic halfs.
As shown in [C10], upon appropriate similarity transformation we can bring φ(z) (207)

in the following form:

φ(z) =

(
Y + 1

2
a(z)

Ba(z)

)
=

( (
v+ 1

2 σa
)α

Yα(z)
ua

µB
µ(z)

)
. (208)

Correspondingly, the (first-quantized) Dirac constrained equations corresponding to the
Hamiltonian constraints (197)–(203) in (195)–(196) acquire the form:

(−∂2)φ ≡
(

(−∂2)Y + 1
2
a

(−∂2)Ba

)
= 0 , (209)

D̂αφ ≡
(

DαY + 1
2
a − i(6 ∂σbσav+ 1

2 )αBb

DαBa − (∂+)−1(6 ∂σbσav+ 1
2 )αY

+ 1
2

b

)
= 0 , (210)

where Dα = ∂
∂θa

+ i( 6 ∂θ)α;

D+aφ ≡
(

D+aY + 1
2
b

D+aBb

)
= 0 , (211)

D̂−aφ ≡
( (

D−a − 1
2
∂a(∂+)−1

)
Y + 1

2
b − (Sac)b

d∂c(∂
+)−1Y + 1

2
d

D−aBb − (V ac)b
d∂c(∂

+)−1Bd

)
= 0 , (212)

where:

(Sab)cd ≡ 1

2
v+ 1

2 σcσ
[aσb]σ−σdv

+ 1
2 , (V ab)cd ≡ δa

c δ
b
d − δa

dδ
b
c , (213)

and the constraint equations D̂abφ = 0 , D̂−+φ = 0 are identically satisfied for (208).
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Now, notice that Eqs.(209)–(212) represents specific case of a consistent overdetermined
system of (linear) equations LAφ(z) = 0 as in (177) with:

LA ≡
(
−∂2 , D̂α , D+a , D̂−a

)
, ηA ≡ (

c , χα , η−a , η+a
)

(214)

Therefore, we can use the formalism of the previous subsection to write down a covariant
action yielding (209)–(212) as variational equations of motion. This action has the form (cf.
(188)):

S0 =
1

2

∫
dz dη ĤΦ(z, η) Q0Φ(z, η) (215)

where the objects are as follows:

Φ(z, η) ≡
(
Y+ 1

2
a(z, η)

Ba(z, η)

)
, (z, η) ≡ (

xµ, θα, ua
µ, v

± 1
2

α ; c, χα, η−a, η+a
)

, (216)

Q0 is given by (186) with LA, ηA as in (214), and the operator Ĥ satisfying conditions (189)
acts on functions of (z, η) (216) as:

Ĥ =

( −1
2

(
K1 + KT

1

)
(∂+)−1 0

0 1
2

(
K2 + KT

2

)
)

(217)

K1 : v
± 1

2
α → i± v

± 1
2

α , c → −c , η±a → −η±a (218)

K2 : v
± 1

2
α → i± v

± 1
2

α , χα → −φα (219)

Formula (215) is the superspace action for the linearized D = 10 super-Yang-Mills field
theory in terms of unconstrained (off-shell) superfields. The connection with the fundamental
super-Yang-Mills gauge potentials Aµ(x, θ), Aα(x, θ) is given by:

Φ(z, η) ≡
(
Y+ 1

2
a(z, η)

Ba(z, η)

)
=

(
i
2
∂+(v+ 1

2 σaσ−)β

[Aβ(z, η) + iDβλ(z, η)
]

ua
µ [Aµ(z, η) + ∂µλ(z, η)]

)
(220)

where:

λ(z, η) ≡ −
∫ x−

dy− u+
µAµ

(
x(y−; u, v), θ, u, v; η

)
(221)

x− ≡ u−µ xµ , xµ(y−; u, v) ≡ (
ηµν + u+ µu− ν

)
xν − u+ µy−

As in (184) we have ((z, η) as in (216)):

Aα(z, η) = Aα(z) +
∑
n≥1

1

n!
ηB1 . . . ηBnAα

B1...Bn
(z) (222)

Aµ(z, η) = Aµ(z) +
∑
n≥1

1

n!
ηB1 . . . ηBnAµ

B1...Bn
(z) (223)
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and:
Aα(z) = Aα(x, θ) + . . . , Aµ(z) = Aµ(x, θ) + . . . , (224)

where the dots indicate higher-order terms in the harmonic expansion with respect to(
ua

µ, v±
1
2

)
. As shown in [C10], the lowest components Aα(x, θ), Aµ(x, θ) in (224) are pre-

cisely the super-Yang-Mills gauge potentials. The proof goes by showing that, upon sub-
stituting of (220) into the equations of motion for (215) which are equivalent to the Dirac
quantized constrained equations (209)–(212), the latter reduce to the (linearized) Nilsson
constraints for Aα(x, θ), Aµ(x, θ), i.e., the equations of motion for the (linearized) D = 10
super-Yang-Mills theory.

Further details, including complete derivation of covariant off-shell superspace action for
the full non-linear D = 10 super-Yang-Mills theory, are contained in [C10].
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7 Principal Contributions

In the context of three-dimensional quantum gauge theories with fermions and within
the framework of the non-perturbative 1/N expansion we have found for the first time in
the literature explicit realizations of the following non-perturbative mechanisms ((A1)–(A6)
modelling the principal physical properties of the realistic four-dimensional gauge theories:

(A1) Dynamical mass generation, including dynamical generation of gauge-invariant
masses for the gluons – this is a radically new mechanism significantly different from the
standard Higgs mechanism.

(A2) Multiple phases defined via more than one order parameters, which are related to
dynamical spontaneous breakdown (and restoration) not only of continuous internal sym-
metries, but also discrete space-time reflection symmetries. The latter represents an explicit
solvable three-dimensional model of the dynamical chiral symmetry breaking in quantum
chromodynamics.

(A3) Non-perturbative particle spectra, qualitatively different in the various phases, in-
cluding particle “confinement” in some of the phases and their “deconfinement” in other
phases.

(A4) A systematic quantum field theoretic approach is developed for description of the
pertinent phase transitions and critical behaviour of the three-dimensional gauge theories
with fermions within the non-perturbative 1/N expansion. All result in (A1)–(A4) are
generalized to the case of three-dimensional supersymmetric gauge theories.

(A5) For the first time in the literature we have proved explicitly the renormalizability of
naively non-renormalizable (within the standard perturbation theory) quantum field theory
models, including those containing four-fermion interactions.

(A6) Explicit construction of the critical theories at the second order phase transition
points, which turn out to be three-dimensional supersymmetric nonlinear sigma-models.
The latter are nontirival examples of three-dimensional conformal gauge theories with fermi-
ons whose anomalous operator dimensions are explicitly calculable with our 1/N expansion
techniques.

Furthermore:
(B1) We have found and thoroughly studied the explicit mechanisms for dynamical anom-

alous (not spontaneous) breaking of discrete space-time symmetries in three-dimensional
gauge theories, which significantly contributes to the deeper understanding of the dynamical
anomalous chiral symmetry breaking in four-dimensional quantum chromodynamics. Here
for the first time in the literature we have proposed an adequate systematic approach for
studying the anomalous breaking of discrete P− and T−reflection parities by using the so
called Atiyah-Patodi-Singer topological invariant. These results are generalized to the case
of quantum anomalies of discrete symmetries in supersymmetric three-dimensional gauge
theories.

(B2) For the first time in the literature we have found and studied in detail the explicit
mechanisms for dynamical spontaneous and dynamical anomalous symmetry breaking within
the framework of the non-perturbative stochastic approach to the quantum gauge field the-
ories which is of fundamental importance for the self-consistency of stochastic quantization.

(B3) For the first time in the literature we have proposed a general scheme for construction
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of conserved Noether currents within the framework of stochastic quantization which are
counterparts of the symmetries in the corresponding equilibrium quantum field theory.

(B4) Within the framework of stochastic quantization we have identified the explicit
mechanisms of topological quantization of physical parameters.

(C1) We have provide a systematic solution to the problem of manifestly super-Poincare
covariant quantization of strings with space-time supersymmetry (Green-Schwarz super-
strings). This is achieved with the help of bosonic spinorial auxiliary (pure-gauge) degrees
of freedom introduced in our works for the first time in the literature.

(C2) For the first time in the literature we have succeeded to explicitly construct gen-
erating functional integral for the Green-Schwarz superstring correlation functions with an
explicitly Lorentz-covariant gauge-fixing of the fermionic kappa-symmetry. It is shown that
this generating functional acquires the form of a functional integral for a free two-dimensional
conformal field theory with a finite number of matter and ghost fields on the superstring
world-sheet, which is free of conformal anomalies in ten-dimensional embedding space-time.

(C3) As a nontrivial application of the results in (A1)–(A2) we have found a new explicitly
covariant formulation of supersymmetric gauge theories with extended supersymmetry in
terms of new types of off-shell unconstrained superfields.

52


