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We construct a gauge-invariant superspace action in terms of unconstrained off-shell super- 
fields for the D = 10 supersymmetric Yang-Mills (SYM) theory. We use to this effect: 

(i) the point particle limit of the BRST charge of the covariantly quantized harmonic Green- 
Schwarz superstring, 

(ii) a general covariant action principle for overdetermined systems of nonlinear field equa- 
tions of motion. 
One obtains gauge and super-Poincard invariant equations of motion equivalent to the Nilsson's 
constraints for D = 10 SYM. 

In the previous approaches (light-cone-gauge, component-fields) one would have to sacrifice 
either explicit Lorentz invariance or explicit supersymmetry while in the present approach they are 
both manifest. 

Unfortunately the action we find is nonlocal in space-time. To restore locality one may have to 
introduce additional degrees of freedom. 

1. Introduction 

It is hoped that a relativistic quantum theory of supersymmetric strings [1, 2] can 
describe in a consistent way the quantum theory of space-time i.e. quantum gravity 
[3]. Unfortunately the proof (or disproof) of this conjecture was not completed to 
this date [4] because it was impossible until recently to express the quantum theory 
of superstrings in a form which displays explicitly the super-Poincar~ invariance. 

In a series of papers [5-10] this obstacle was overcome through the introduction 
of appropriate "spinorial vielbein" variables called "harmonic variables". It be- 
comes now appropriate to address the question of how the SYM and SUGRA 
theories do appear in this explicitly covariant quantum superstring formalism. 

In the present paper we use the BFV-BRST [11] charge of the super-Poincar6 
covariant first quantized GS superstring with N = 1 space-time SUSY computed in 
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[10] to construct the gauge and super-Poincarg covariant field theory corresponding 
to its zero-mass sector (i.e. the D- -  10 SYM) in terms of unconstrained (off-shell) 
superfields. To this end we employ (and review below) the general covariant action 
principle for arbitrary consistent overdetermined systems of nonlinear field equa- 
tions proposed in our preceding paper [12]. 

The supersymmetric D = 10 SYM field theory was discovered in the component 
formalism by [13, 14] and has an on-shell supersymmetry due to the celebrated Fierz 
identity for D = 10 o-matrices: 

+ + = 0 .  (1.1) 

Unfortunately,  in the form in which it was discovered, the SYM lagrangian: 

L =  - ~ t r (  f s , f  s') - ½i tr(w ~rw) (1.2) 

was not explicitly supersymmetric. In (1.2) w~ is a left-handed Majorana-Weyl 
D = 10 spinor while fs~ and ~7 s are gauge-covariant expressions in terms of a gauge 
vector field as(x) :  

= [ v's, v s=  o s + ; g [ a s , . ] .  

We use here lower case characters a, V r, f ,  w, ep e tc . . ,  in order to emphasize that 
the respective expressions are ordinary fields and not superfields as we will use in 
the rest of the paper and denote by capitals: A, V7, F, W, ep. Later we will also 
introduce ghost-haunted superfields which we will denote by d ,  o~, y#, ~ etc. 

The field equations of motion which this field action generates by varying with 
respect to a and w respectively are: generalizations of the Maxwell and Dirac 
equations respectively: 

V'sfs ~ = t2g(o,)~ { w~, w~ }, ~w = (a  s) ~ Vrsu ~ --- 0. (1.3) 

In order to obtain an explicitly supersymmetric theory it was tried to formulate the 
theory in terms of superfields: q~(x, O) = ~,(x) + ~lr61(1/r!)O~... 0 ~  ~1 .... "(x). The 
general 1-form gauge superfield in the D ~ 10 N = 1 superspace: 

A ( x , O )  = dxS A~(x,  O) + dO~A~(x, O) (1.4) 

describes too many degrees of freedom and in order to describe just the on-shell 
SYM it has to be submitted to certain constraints (the Nilsson constraints) [15]: 

gF '~# --- { V r~, V 7t~ } - 2 i ( a s )  '~# Vrs = O, (1.5) 
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where 
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1. V"=O°+g[A o,.}, D°= 0 
+ i ( o " ) ~ l ~ O o O  ~ . 

ooo 

(1.6) 

The integrability conditions (1.5) together with their consequences from the 
Bianchi identities for the above covariant derivatives can be shown to be equivalent 
to the ordinary field equations of motion obtained from the (1.2) lagrangian 

[16-18]. The great puzzle was the fact that it was still impossible to find an 
explicitly super-Poincar~ invariant action from which the Nilsson constraints (1.9) 
would appear as field equations of motion when the action is varied with respect to 
the superfields. The exact conditions for this impossibility were codified in certain 
no-go theorems [19]. 

The harmonic "spinor-vielbein-like" variables avoid the above no-go theorems 
[5-10]. This is not completely unexpected in view of similar successes obtained by 
the harmonic superspace approach in different contexts [20]. Moreover the apparent 
relation of certain "vielbein-like" auxiliary variables with supertwistors [21-23] 
renders natural their usefulness in describing massless systems [16,18]. 

In the present paper we show that our gauge and super-Poincar6 invariant 
unconstrained superfield action based on the point-particle limit of the BRST 
charge QBp, s'r of the super-Poincar~ covariant GS superstring gives on-shell the 
Nilsson constraint equations of D = 10 SYM. 

The plan of the paper is as follows. In sect. 2 we review pedagogically the 
developments [5-10] which lead us to the super-Poincar6 covariant QBRs'r of the GS 
superstring. In particular we explain the origin of the auxiliary variables and of the 
additional gauge invariances. Also the statement in the recent paper by Kallosh and 
Rahmanov [24] claiming "nonunitari ty" of our formalism is shown to be incorrect. 
In sect. 3 we describe the super-Poincar6 covariant first quantization of the N = 1 
BS superparticle [25-29] (the zero-mode of the GS superstring) in the Dirac 
canonical formalism, Sect. 4 is devoted to the covariant first- and second-quantiza- 
tion of the D = 10 N = 1 BS superparticle in the BFV-BRST formalism. In sect. 5 
we derive a harmonic superfield representation of the Nilsson constraints for D = 10 
N = 1 SYM and prove its equivalence to the original Nilsson constraints. In 
particular, the linearized form of these harmonic superfield equations is shown to 
exactly coincide with the Dirac constraint equations for the superfield wave func- 
tion of the covariantly quantized D = 10 N = 1 BS superparticle. In sect. 6 we 
review our general covariant action principle for arbitrary overdetermined systems 
of nonlinear field equations and apply it to construct a superspace action for D = 10 
N = 1 SYM in terms of unconstrained (off-shell) superfields. In sect. 7 we discuss 
the implications of the present results and the directions for further developments, 
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The appendix supplies the general proof of the pure gauge nature of the auxiliary 
harmonic variables, needed to perform super-Poincar~ covariant quantization. 

2. The super-Poincar~ covariant quantization of the GS superstring 

The present work constructs the unconstrained superfield action of the D = 10 
SYM making use crucially of the point-particle limit of the explicitly super-Poincard 
invariant BRST charge of the GS superstring. Such a BRST construction was 
possible as a consequence of the harmonic superstring program for a manifestly 
super-Poincar6 covariant quantization of the GS superstring which we developed 
during the last year [5-10]. In order to make the structure and the origin of the 
BRST charge construction clear, we will describe in this section in a sketchy but 
hopefully pedagogical way the main ideas and concepts of the harmonic superstring 
program. The BS action in the hamiltonian formalism is: 

S= fd,[p,O.x"+pgOA-H ]. (2.1) 

H r = X p  2 + X ~ , D  '~ . (2.2) 

In (2.1), 0~ is a left-handed D = 10 MW spinor X and X~ are Lagrange multiplies, 
and the fermionic constraint D ~ reads: 

D ° - i p ;  (2.3) 

These constraints are half first-class and half second-class. This was for years the 
puzzle of covariant quantization of the GS superstring (and the BS superparticle): 
the spinor objects relevant for the quantization procedure are too small to fit into a 
spinor representation of the Lorentz group. In fact the structure of the constraints 
requires objects which transform under the group SO(8) × SO(l, 1). We want to be 
able to express objects transforming as spinors of SO(8) without breaking the 
SO(1,9) Lorentz symmetry of the system. To this end we introduce the auxiliary 

a 1 

variables [5-10] u~, v +2 where the indices/~, a transform as vector and MW spinor 
under the global Lorentz SO(1,9) respectively, while the indices a, _+ } transform 
respectively under the internal groups SO(8) and SO(l, 1). These auxiliary variables 
will act as "spinorial vielbeins" bridging covariantly between SO(1,9) and SO(8) 
spinor objects. They fulfill by definition the orthogonality relations: 
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where C ~b denotes the invariant metric tensor in the relevant SO(8) representation 
space. 

In the sequel the following two light-like vectors u~ will appear, which are 
composite variables built out of the elementary variables v+~: 

(2.5) 

This construction automatically encodes the light-like geometrical character of u/+ 
which is due to the D = 10 Fierz identity (1.1). There are indications that this fact 
has deep relations with the twistor light-like geometry of space-time [30,22,23]. 
Henceforth, we shall use the shorthand notations: 

p. ~° ~1 u,,,o[,l op.,] (2.6) A + - u ~  A~'' Aa=up. A ' o C t l "  ~ U l * I  " ' "  ~ n  " ' "  

for any Lorentz vector A t. Let us particularly stress that A +, A" are Lorentz scalars 
and they should not be confused with the vector components of A t which appear in 
the non-covariant light-cone formalism. 

The gauge invariances, insuring that the introduction of the vielbein-like variables 
u, v does not affect the physics, are expressed in the hamiltonian formalism by the 
first class constraints: 

0 -ou,~O ( 8 ~o~ 0 ) DUb_ a u ~ T - - -  + ~ v+~o ~ + v- (2.7) 
Ov + ~2 Ov 12 ' Up. 0 Up. b 

D - + -  
0 0 

G Ov+~ Ovd, ~ 
(2.8) 

0 0 
D +~ - u~ O u~, a + 12v ~ ~o + o ~ --.Ov~_ ~ (2.9) 

They express the fact (analogous to the principle of equivalence) that the physics is 
invariant under arbitrary rotations of the "vielbein-like" frame (u~,u~).  The 
operators (2.7)-(2.9) represent indeed the SO(1, 9) algebra under commutation. 

The second important requirement is the requirement about the specific indepen- 
u 1 

dence of the wave functions qS(x, 0, u, v) on the auxiliary variables u~, v + ~. The 
representation space .K," 0 in which the above quantum operators will act is spanned 
by definition by functions of the following general form (here q~ is taken in the 
momentum space representation with respect to x): 

+ ( p , O , u , v ) =  Y'. ~ ux~ . . .  o, u, . ) (2 .1o)  
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(recall p+-v+-'~t~v+-~), where qa~ x/{"/ are defined by the following specific expan- 
sion in the auxiliary variables u, v: 

,,o + + %°,  
al Up.,, ] S0(81 singlet U~I U~,,/gxm. l " ~ k l  . . . . . . . . .  

×~{x}{,I{u}{~}(p 0) (2.111 k l n m  t, , • 

The expansion (2.11) is characterized by the fact that each term is a monomial in the 
auxiliary variables in which all the SO(8) × SO(l, 1) indices are saturated among the 
u~, ~'s and the v~l/2's only, whereas the coefficients "ekl,,,,'~{a}{~}{g}{~}(P, 0) are arbitrary 
ordinary superfields inert under the SO(81 × SO(l, 1) internal group, i.e. they do not 
carry any SO(81 x SO(1,1) indices. In order to have the terms of the expansion 
(2.10) all independent, the coefficient superfields have to be symmetric in the 
indices { X } and { v }: 

¢~;~"x,}~}(p,O,u,~)  = * ~  ~,  ~ . ~ ,  .... } ~ (  p,  0 , . ,  ~) ,  

qCx}{ .... ,...~... = k~ }(p,O,u,v) ,~{x}~.. ~,..~,. }( -ekl p, O, u, v) ,  (2.12) 

traceless: 

. . . .  , . . . .  

n~ = diag( - ,  + . . . . .  + ) (2.13 t 

and transverse with respect to p~, u, +' 

p a o l i  ' a  .... }{'}(p,O,u,v)=O, r,,"4 {x}{k, .... ' } ( P , O , u , v ) = O ,  (2.141 

+ {...X,.. v) 0, 

, - ,  + l . a { x } { . . . ~  ...} (~,~ + ,~ o , , , ~ ,  ' ( p , 0 ,  U , v ) = 0 .  (2.15) 

Similarly, in order to have the terms in the expansion (2.11) all independent, the 
coefficient superfields, besides the properties coming from (2.12)-(2.15), have to 
obey additionally the properties of symmetry and tracelessness with respect to the 
indices { x }: 

_ ,.a{,M { v}{t*}{. "~... ~,... 
, ~ { x } { ~ } { . } {  . . . .  , . . . . .  J } ( p , O ) - . e k /  . . . .  .i.,klnm " "  }(p, O) (2.16) 

1 ~{x~{,}{,}{ .... , .... ,...}( 0) o .  g,gj k l n m  P, = 
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The Dirac constraint equations: 

D ° ~  = 0, O + ,  = 0 (2.17) 

are identically satisfied on the space ~0  of wave functions given by (2.10) and 
(2.11). Therefore, 0(P,  0, u, v) (2.10) is actually a function on the homogenous 
space £P/SO(8)× SO(1,1) instead of being a function on the original space 58 
defined by the kinematical constraints (2.4) on v + 1/2, u~. Hence the functions of the 
form (2.10) will be called harmonic superfields whereas the functions (2.11) will be 
called analytic harmonic superfields (because of their analytic dependence on 
v~ -+ ~, u~a). This also justifies the name "harmonic" for the auxiliary variables v + ~, u, 
which effectively enter the present formalism through ~°/SO(8) × SO(1,1). Analytic 
harmonic superfields were first introduced in a different context in [20]. 

Let us point out, that the harmonic superfields (2.10), (2.11) are also characterized 
by the fact that they do not carry external overall SO(8) × SO(l, 1) indices (hence 
the subscript o in the notation o~ 0 of their space). In sect. 3 we shall introduce more 
general harmonic superfields bearing external SO(8)× SO(1,1) indices which are 
simply expressed in terms of the fields (2.10), (2.11) (see also the appendix). 

Now, one can easily deduce (cf. [6]), that the Dirac constraint equations: 

(Dah, D + , D + a , D - " ) O = O  (2.18) 

on the space ~0  (2.10), (2.11) imply (in the notations of (2.10), (2.11)): 

¢P0ooo ( P, 0 ) = arbitrary, 

q~ {x){~}{~){~)l " 0 ) = 0  (k , l ,m,n)4=(O,O,O,O)  (2.19) k l n m  \ F ,  , 

i.e. the Dirac first-class constraints (2.7)-(2.9) together with the specification (2.10), 
a 1 

(2.11) of the representation space -)¢~0 imply that u,, v + ~ are pure gauge degrees of 
freedom. A simple explanation of this property is that the harmonic superfields 
from -'~0 (2.10), (2.11) depend only on 45 independent combinations of harmonic 
variables*: u~, u~ + =v-+~%v ±~ which exactly matches the number of equations 
(2.18). 

The restriction of the quantum states of the harmonic formalism ~(p ,  0, u, v) to 
the form (2.10), (2.11), i.e. to the space ~0 is crucial. It is this restriction which 
substitutes within the harmonic formalism for the "missing" 

14 gauge invariances = 59 (the number of independent u~,v +~ from (2.4)) 

--45 (the number o f D  ~h,D + , D + a ) ,  

* The 100 harmonic combinations u~, u~ are subject to 55 kinematical constraints (cf. [31]): u~u I'~' 
Cat, , +~. ±)2 +u ~'=-1. u,u- =0,(u =0, u, 
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"'s and the v~ +-~ s if the which would be necessary to gauge away completely all the u. 
's and the v + ~'s: wave functions ~ were allowed to depend arbitrarily on the u. 

_ 1  i 1 1 
a I a,, ~ . .  U~n~ V ~ 1 2 . .  " U~/. 2 ~ b a r b i t r a r y ( P  , O,  /2,  U )  = E " t * ,  " ' "  " . . , U c q  - " 

{~}{-}{3) 

x4, +~<" *~{"}{~}<~}(p, O) 
a l , . .  a n 

(2.20) 

Overlooking the crucial difference between the naive wave functions (2.20) and the 
relevant space JY'o of quantum states defined by (2.10), (2.11) leads to a statement 
in a recent paper by Kallosh and Rahmanov [24] claiming the "non-unitari ty" of 
our formalism. The above explanation, and the discussion in the appendix below, 

shows that their claim is not correct. 
From the constraint algebra one easily deduces the action describing the pure- 

a 1 
gauge "dynamics" of the system of harmonic variables uu, v + 7: 

Sharmonic-~ fdr[ P~a O,U~ + p. ~'~ O~U+~ ~ + p[  ~ O~V~ '2 

- A . b D a I ' - A  + D + - A . D + a - A + D  "] .  (2.21) 

In (2.21) A,~ . . . .  , A + denote Lagrange multipliers for the corresponding first-class 
constraints D"h , . . . ,  D ~ which are the classical counterparts of the harmonic 
differential operators (2.7)-(2.9) and, therefore all constraints are first class. 

The classical analog of the requirements (2.10), (2.11) on the representation space 
"-~0 of quantum states is the requirement on the form of the classical "observables" 
[6]. The latter are not arbitrary functions of (u, v) and their conjugate mo- 
menta (p,,, p,), but are given as expansions in (u, v; p,, p,)  where all internal 
SO(8) × SO(1, 1) are saturated among u, v, p,, p, and, therefore the corresponding 
coefficients do not carry any SO(8) × SO(l, 1) indices. 

Let us now see how the presence of the auxiliary variables allows us to express 
separately the first and second class constraints [6]. 

Given the constraints (2.3), and using the vielbein-like harmonic variables (2.4) 
we can express the 16-component 10 D MW spinor constraint (2.3): 

D :  = - - 

in terms of 2 sets of 8 Lorentz scalars (organized as two SO(8) spinors): 

(2.22) 

D ° ( 2 . 2 3 )  Ut~U a 
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The projectors in front of D v are chosen such that the Lorentz indices are saturated. 
In particular one sees that without the v's it is impossible to saturate the Lorentz- 
spinor indices. However v + ~ together with (o~) ~B can convert a spinor index ~ into 

a a vector index ~ which is then saturated with an u,. The role of o + (cf. (2.6), + is 
an internal SO(1,1) index which is inert under Lorentz transformations) in (2.22) is 
to appropriately raise a spinor index. The role of/~ in (2.23) is to make D + ~" first 
class. 

It turns out that indeed G + I, constitute 8 second class constraints (i.e. the matrix 
of their Poisson brackets 

{ G + ~", G+~h}p B = ip+ C "h (2.24) 

is nonsingular) while (2.23) are first class (i.e.: 

{D+~",D+~b}p,= - 2 i ( p + ) p  2 ( = 0 modulo constraints)). (2.25) 

In turn D ~ can be reconstructed out of D, + ~ and G + ~: 

D ~ = ( p + )  l(abv+½)~D; ~ + ( p + ) - l ( ~ o + o h v  ~)~G; ½ (2.26) 

Once the covariant separation of the constraints is effectuated, one can use a trick 
invented in [32, 33] to transform the second class constraints G + ~ (2.22) into first 
class constraints G+ -~" without changing the physical content of the constrained 
system* by introducing auxiliary dynamical real fermionic variables 'Pa [8, 9] with 
transformation properties** and Poisson brackets similar to the second class 
constraints which they convert into first class ones: 

G+'~" = G+~'" + p ~ " ,  (2.27) 

( ,p,, ~pb } PB = -- iCab" (2.28) 

One can then use the decomposition (2.26) to reconstruct [8,9] the Lorentz MW- 
spinor first-class constraint /)~ out of the first class constraints D + ~" (2.23) and 

(2.27): 

b o + 

=- D~ + ( p + ) -  ~( t~a + o% '2)%t",. (2.29) 

The introduction of the auxiliary fermionic variables q "  (2.28) into (2.29) 
necessitates the simultaneous modification of the harmonic first class constraints 

* In  some spec ia l  cases [23] the Faddeev-Shatashvi l i  t r ick works  even when  separa t ion  is not  possible.  
However ,  the auxi l ia ry  v ie lbein-hke var iables  u, o are a lways necessary. It  turns  out  that  they are 

re la ted  wi th  cer ta in  twistor- l ike D = 10 objects  [23]. 
**  The  g " s  are re la ted  to the G r a s s m a n n - o d d  componen t s  of certai  super twis tors  [23]. 
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(2.7)-(2.9): 

D ~b ~ / )  ob = D "b + k ab , (2.30) 

D -~  --+ b ~ = D b _  P_~_bkab ' (2.31) 
p+ 

with D +, D +° remaining the same, where: 

~ o  l e d  x x , (2.32) 

(~ )  ~(~ ) , ~ ( 1 - • ab + ~b _~ ~b = V v -o f f  o oar  ~ 2.33) cd cd 

The 8 X 8 matrices ~ b  (2.33) are precisely the D = 10 Lorentz-invariant genera- 
tors of the harmonic SO(8) (c)-spinor representation (see [10]). 

Also one can easily check, using the explicit expression (2.32) and the anticommu- 
tation (upon quantization) relations (2.28), that: 

[ R ~b, k "~ ] = C b ~ k  ° a -  C " R b d  + C ° d R  h e -  Cba.~ ~ , (2.34) 

[D ~b, a ca ] = 0. (2.35) 

Thus, both parts D "b (2.7) and /~b (2.32) in the modified first-class constraint /~,b 
(2.30) (generating once again the SO(8) algebra under commutation) may be 
interpreted as harmonic "orbital" and harmonic "spin" SO(8) rotations respectively. 
The implications of these will be elaborated upon in sect. 3 (see also the appendix). 

The modifications (2.30), (2.31) are needed in order to preserve the first-class 
property of the new system of covariant and irreducible constraints: 

p2, /3~(2.29), bob(2.30),  D - + ,  D+, ,  /3 ~(2.31), (2.36) 

Thus we arrive at the harmonic BS action [9]: 

Ssuperparticle = SBS -{- Sharmonic, 

&s = f d~[ p, < x ,  + p; <oo + i~,°<~.~- a p  2 - a o b ° ] .  

uoO,u~ +Pv O~v~ +p+~O,v22 

(2.37) 

(2.38) 

The new action (2.37)-(2.39) is physically equivalent to the original BS action (2.1), 
however, it possesses the decisive advantage of having super-Poincar6 covariant and 
irreducible first-class constraints only. Thus, the super-Poincarfi covariant canonical 
quantization of the BS superparticle (either ~ la Dirac or in the BFV-BRST 
formalism) is now straightforward (see sects. 3 and 4). 

- A a h D " b - A + - D - + - A 2 D + " - A + b  "]. (2.39) 
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Let us particularly stress, that all first-class constraints (2.36) and the auxiliary 
fermionic variables q'a (2.28) are all real. Therefore, the harmonic BS action 
(2.37)-(2.39) is real too. The harmonic BS and GS actions in [8-10,23] are also 
real. 

The harmonic super-string action in the hamiltonian formulation is a generaliza- 
tion of the above harmonic BS action (2.37)-(2.39) [8-10]: 

= S G S  -}- S h a  . . . .  i c ,  (2.40) 

S°s= ~=1,2 ~ (PgAO'OA~+iq'~O"l"a") 

- 2 (AAfA + AA~L);)]. (2.41) 
A = 1 , 2  J 

The main characteristics of this harmonic superstring action (2.40) (2.41) are: 
a .  (i) it contains the harmonic space variables v + ~, u,, 

(ii) it contains new fermionic string variables g'~(~); 
(iii) all its constraints are first class and irreducible; 
(iv) the space-time supersymmetry is realized linearly; 
(v) it possesses a larger set of gauge invariances and it reduces, in a particular 

gauge, to the original GS action. 
The term Sh~rmom~ in (2.40) has precisely the same form as S h . . . . .  ic (2.21) with 

the constraints Dab, D -a appropriately modified due to the introduction of q'~'(~) 
(cf. (2.30) (2.31)). Accordingly, the new first class, independent and covariant 
system of constraints is more complicated [10]. The constraints generalizing the 
harmonic constraints (2.7)-(2.9) are: 

( _0 
D +-- 1 o + I o v  +~ v~ , (2.42) 

0 0 
+ t + 

D +~= +½v ~o o ~ -  (2.43) 
u~, 3u..  Ov-~' 

b~b = Dab + E f "  d~/~]h, (2.44) 
A ~r 

i) ~ -  D ~ -  A f'~ d~(H~A)-IIIAbR~ h _  

f f r  + - 2 cd ~ a + t b RA(o (2.45) 
A 

where (cf. (2.32)): 
/}]b_ ! t ~ b ~  ~ q t a  (2.46) 2 \  ° ] c d X A * A  ~ 

{ q',~(~), q'~(~) } PB = --i6ABcob~(~ -- ~) (cf. (2.28)), (2.47) 
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and ~,b is the same as in (2.33). The bosonic constraints generalizing p2 are: 

~ADr ~ a  7~.4(~) H 2 4 i ( - 1 ,  ~AJd~+2i ( -  A . , -= - 1) q'~ (~) g,~,~(~), (2.48) 

with the notation: 

HA" ----- P" + ( - 1) A [ X, ~ + 2iOAo,Od]. (2.49) 

The fermionic constraints (2.29) are generalized by: 

where D2 

_ _ I a b c O + O  , a -  b;(~)-- -D;(~)  i ( 1 ) A ( H j )  ( A) RAhc 

+ ( H~ )- ~ ( UAo + abv-~ )~'pAb, (2.50) 

is the mixture of first and second class constraints appearing in the 
original GS formulation [1]: 

Dff = --ipo~A- [P" + ( -1)A(  X'" + iO~a"O~)](O, OA) ~ . 

The information of the new set of covariant, BFV-irreducible, first class con- 
straints is encoded in the BRST charge [10]: 

QBRST = O h  . . . . .  nic q- Qstring; 

[ 0 3 
0h . . . . . .  ic = i7ab[ ~)ab + ~ +~ 7 +b 07; 072 

0 0 0 
- -  - 7 - ~ -  + 7~ 0 + 7 - "  O G  O G  7~a 

[ 0 O ] 
+i7+ °-++72o7; ~ 

[ o o 
+i~1 + b ~+72 07+ 7 -bcg~.h 

~_ ' +a 

17~ D 

(2.51) 

1 ~ + . ! 4 -  - -  

A - - ' r r  

× 8C----A 1) 0~8~A~ , (2.52) 

'~d~{ [^ ( 3 )] Q~tring=~_.f c~ T A - 4 i ( - 1 )  A C' 6 - - - - -+XA,~  +X.4,~[); 
~4 - ,4 8cA 
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The ghosts c A, XA~, ~,h, V/+ ,~ ", 7/+", appearing in (2.52)-(2.53) correspond re- 
spectively to the constraints TA, Dj ~, D ~h, D +, D + ", i ) -  ~ 

We conclude this section with the following remarks concerning the extension [24] 
of the harmonic superstring program [5-10] to the lagrangian formalism. This 
important development might allow for the application of the powerful methods of 
the two-dimensional conformal field theory to the covariantly quantized GS super- 
string. 

a Since in the present formalism the harmonic variables u,, v +~ do not depend on 
the string world-sheet coordinate ~, the action Sha~mo~ic in (2.40) does not possess 
manifest reparametrization invariance. However, as already explained in refs. [5-7], 
the harmonics v + ~, u~, whose dynamics is described by the action S h . . . . .  ic (2.21), 
are pure-gauge degrees of freedom and, therefore, their independence on the 
world-sheet parameter ~ does not spoil the reparametrization invariance of the 
physical superstring dynamics described by (2.41). In fact, in the hamiltonian 
framework (in which we always work) the reparametrization invariance is accounted 
for by the presence of the first-class constraints 7~A(~) (2.48), satisfying the correct 
Virasoro algebra. Therefore, there is no breaking of reparametrization invariance in 
the present canonical hamiltonian formalism. Moreover, as stressed in [10,23] 
nothing prevents us from taking the harmonic auxiliary variables v, u to depend 
also on ( by a straightforward generalization of (2.21), (2.42)-(2.45). In the latter 
case, however, the expressions for the modified superstring constraints 7~A (2.48), /)~ 
(2.50) and the PB algebra become more complicated. 

Actually, if we delete the fermionic string variables q'2 from the harmonic 
GS action (2.40), (2.41) and work instead (as in our original ref. [5]) with the 
covariantly disentangled first class (D~{'~=-v+'~oO/HADA) and second class 

- 5v ~o%+DA) constraints, then it is possible to rewrite S h . . . . . .  ic (2.21) in a 
a manifestly reparametrization invariant form by promoting v~ + ½, u~ to depend also 

on ~ [24]. 
The set of auxiliary variables used in ref. [24] exactly corresponds to the harmonic 

variables (2.4) introduced in [5-10] while the constraints in [24] are identical to a 
subset of the harmonic constraints in [7]*. 

Actually, using the auxiliary variables VA~, ~ introduced in [27], one can con- 
struct a simpler manifestly reparametrization invariant harmonic GS action. Here 
the symbols A -- (a, d), B -  (b,/~), a, b, d,/~ = 1 , . . . ,8  label pairs of Lorentz- 
invariant internal SO(8) (s) and (c)-spinor indices. The explicit form of SaoxJlia~ 

* T h e  harmonic variables used by Kallosh and Rahmanov in [24] v +t /2  k ~ ( k , / ~ = l ,  ,4) , U p ,  U ~ ,  . . .  

correspond to the harmonic variables L,~ +1/2, u ~ , w ~ , ~ ,  ( k , /~=  1, . . . ,4)  of ref. [7] through the 
k k a ~ _ - - ~  a relation ut, = w,~ u,,  u~, -- w,; u~,. The sets of harmonic constraints { H }, { F }, { K } in [24] correspond 

to { D + (eq. (2.8) above), E IJ, E 4 },{ D+~(eq. (2.9)), E+t},{(~zV+l/2a"hO/Ov+l/2) part of D"t'(eq. 
(2.7))} of [7]. Here E z J, E +-, E +I are the "second generation" harmonic constraints involving 

w, ~, N~ which helped us in [7] to reduce covariantly SO(8) to SU(4) × U(1). 
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entering the modified GS action 
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SGS = SGS -}- Sauxiliary (2.54) 

reads: 

= fd~d~f2~[ (~ , i ) .&vd  +(pd)  O~v;4 ~ 8  Me(~A.).], 

(2.55) 

where ~/'AB and ~AB [27]: 

%~(~, ~) =- ~o(~ ,  ~ ) ~ ( ~ ,  ~) - ~ .  = o, (2.56t 

(2.57) 

are 2 × 256 Lorentz-covariant and functionally independent Dirac first-class con- 
straints, responsible for the pure-gauge nature of the 2 x 256 auxiliary variables 

In (2.55) (2.57) z, Z denote (anti)self-dual world-sheet indices defined through the 
2-dimensional world-sheet (anti)self-duality projectors [2]: 

p+,,~_ g,,,n + ~ = e~'e." P .... -= g"~ 

where e~.~ are world-sheet zweibeins corresponding to the world-sheet metric gm," 
Then: 

( P~)z = e"( p~ ) , ,  ey (p~) ,  --- 0, ~ B  = e ; ~ B ,  e;X AB = 0, 

and similarly for #z, z- 
With the help of the auxiliary dynamical variables (vff, tT~), we can now express 

the fermionic ~-gauge invariance [26] of S (2.54) in a Lorentz-covariant and 
irreducible way: 

8~0,~ = i(U~ ) .,6yK~ (2.58) 

where the gauge parameter ~ff has only 8 (and therefore-  independent) Lorentz 
invariant components*. 

One can continue covariantly the quantization procedure in the lagrangian 
formalism by imposing covariant gauge-fixing condition for the irreducible ~-gauge 

* Recal l  a = 1 . . . .  ,8 which is the correct n u m b e r  of independen t  x-gauge symmetr ies  (of. [28]). 
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symmetry (2.58) (cf, [34]): 

xo-  0o=0. (2.59) 

The corresponding gauge fixing in the hamiltonian formalism was used in [10] in the 
process of constructing the covariant vertices. 

By further imposing the gauge conditions [24]: 

AB - -  AB 
X ~ - I ~ : ~  = 0 

one may obtain a gauge fixed action of the form: 

2~gslgauge fixed = SGSI~0= o + Sauxiliarylp,~x= 0 -+- (ghost terms). (2.60) 

Let us emphasize that (2.60) is not manifestly super-Poincar6 invariant since the 
gauge fixing condition (2.59) apparently breaks half of the space-time SUSY. 
Consequently, the supersymmetry algebra becomes nonlinearly realized as in the 
non-covariant light-cone formalism [2]. 

Constructing systems as (2.54)-(2.57) or [24] in which the number of new 
constraints equals the number of new auxiliary variables is not difficult [27, 23] and 
it is esthetically appealing* but it is not a necessary condition for the consistency of 
the model. This was already shown in [6] for our case and it is well known in general 
from the harmonic superspace approach [20,31]. Namely, the "missing" gauge 
symmetries are substituted in the harmonic superspace approach by the requirement 
for specific dependence of the superfields on the auxiliary variables (2.4). For 
additional details, see the appendix. 

The lagrangian formulations of the type (2.54) are useful if one wants to quantize 
covariantly the GS superstring within the lagrangian functional-integral approach 
[35]. However, for our main objective: an explicitly space-time supersymmetric 
superstring quantum field theory, it is preferable to use (as we do in the present 
work) the hamiltonian formalism and a set of variables which are strongly confined 
on the harmonic constraint shell (2.4). 

3. Super-Poincar6 covariant quantization h la Dirac of the BS superpartiele 

Before entering in the details of the construction of our gauge covariant and 
manifestly super-Poincar6 covariant field theory for D = 10 SYM, we discuss the 
first quantized theory of the zero-mode (point-particle) limit of the GS superstring, 
i.e. the (N = 1) BS superparticle. 

* Using such systems, in which the auxiliary variables are not strongly constrained by equations of the 
type (2.4), one obtained interesting relations between supersymmetric particles, twistors and higher N 
SYM in 4 dimensions [23]. 
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In the present section we describe the super-Poincar~ covariant first quantization 
of the latter in the Dirac canonical formalism. 

The physical states of the D = 10 N = 1 BS superparticle are the ones which fulfill 
the Dirac constraint equations (as it will be explained below, they are matrix 
equations for a vector-valued ~ in our representation space) 

p20=O, 

0 b 0 

bu% _- u2 O u.b - u. a u~  

1( 0 ] 
+ v+~o ~b + v - ~ o  ~h + R  ~b ~ = 0 .  

Ov ~ ~ 

(3.1) 

(3.2) 

(3 3 )  

D-+O - } 
a 0 L t  

v~ Ov2~ Ov~2 
= o, (3.4) 

O , +  O 
D+°,~- = u; auto + ~v ~o ~°=- -~ / ,~=0 ,  (3.5) av-~) 

b_o~ [(, o 1,+~o_oo o 
- :  - -  + 2  O U~, a OV + 2 

- ( p + ) - l p b k u ~ ' ] ~  = O, (3.6) 

where 

nabs__ l [ ~ a b \  . r .C.tod 
~t7 ) , .d'e 'e (3.7) 

and the linear operators of the left-hand side of (3.1)-(3.6) are the quantized first 
class constraints (2.36). 

In passing to second quantization one reinterprets the quantum states as classical 
fields, and the constraint equation (3.1)-(3.6) as the free field equations (recall that 
the superparticle hamiltonian is weakly zero). 

We will use a matrix representation with respect to g'~ and a functional represen- 
tation with respect to the other variables z = (x ~, 0~, u~, v + 21). In the following, we 
will call each vector of functions representing a quantum state a "wave function" 
for conciseness. Let us explicitate the matrix structure of (3.1)-(3.6) following from 
the matrix representation of the quantum operators corresponding to the vari- 
ables ~/'~. 
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The Grassmann variables 't," are defined in (2.27) to fulfill Poisson brackets 
relations (2.28) which at the quantum level determine the anticommutation relations 
of the corresponding operators (which we denote also by ,t,"). According to these 
anticommutation relations, the operators q'~ form an 8-dimensional Clifford alge- 
bra: 

{ q'~, 'I'" ) = C "b . (3.8) 

Therefore the operators q'" can be faithfully and irreducibly represented by 16 × 16 
SO(8) Dirac F-matrices: 

q'~ = ~ F ~ .  (3.9) 

The index a of g'" transforms under the SO(8) generators (3.3) according to the 
relation: 

Ibm.h. q,. l = (3.10) 

,b } (3.11) 2 \ ] cd  U O cot O r (I d U 

Consequently, the g'~ are in the harmonic (c)-spinor representation. Due to the 
triality properties of the harmonic SO(8) representations, the '/'" 's will relate states 
which are in the harmonic (s) representation to states in the harmonic (v) represen- 
tation. Moreover, since ,/s, are grassman-odd, they will relate bosons to fermions. In 
conclusion, the ,/,a 'S are represented by the 16 × 16 matrices: 

, o_[ 0 
~ a =  ~-22 F 8  - -  1 ~ a  (312)  

where 

(7")h ,  ,~ v/2v+~o%or%, v ~, ( ~ ' " ) b , -  v/2v-~%or%, .v+~ (3.13) 

are the Lorentz-invariant harmonic D = 8 Or-matrices [10]. ~ lla act on states of the 
a 1 

form (recall z - (x ~, 0~, u~, v~ 2): 

~ ( z ) =  iBm(z) , (3.14) 

where F a are fermions and B a are bosons. Let us stress that the wave function q,(z) 
(3.14) is real (only in this case it will describe on shell the D = 10 SYM multiplet; 
see sect. 5). 
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The internal SO(8) rotation properties of these objects are obtained by looking at 
how they are acted upon by the "non-orbital" ~ b  part i n / ~ h  (recall (2.34), (2.35)): 

where 

o J 

= [ S'abO V a~O ], (3.15) 

( V ~ )  ,.d =- Ca'Chd - C"aCba (3.16) 

is the harmonic SO(8) (V) representation [10] and S '"b is a representation related to 
the harmonic SO(8) (s) representation S ah (see [10]): 

a b  _ _  ~ a b  + I - '  
= ~ v  o~.o o OdV ~- (3.17) 

through a similarity transformation U: 

S '~b= u s " b u  -1 , (3.18) 

[U ] , b  V~-rc (y,,) ah_~ 2(v + ~o"o~bhv - ~) (v  + ~o~v -'2) = C "h - 4r~r  h, (3.19) 

r,. -= v + ~ocv-~ (3.20) 

Consequently, we can now write the Dirac constraint equations (3.1)-(3.6) defining 
the physical quantum states in our matrix representation. The harmonic constraint 
equations are: 

( b " h O ) c ~ - [ ( D ~ h + R O a ) O ]  = D ~ b B ~ . + ( V . h ) d B d ] = O ,  (3.21) 

[D +F'I 
( [D-+0]¢=  [D +B ' ] = 0 '  (3.22) 

( [D+OO]"= [ D + . g c  ] = 0, (3.23) 

In view of (3.18), in order to have F" transform in the standard (s) representation 
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and also, in order to absorb the factor 1 / { 7  + in (3.2) it is natural to work with 
new superfield wave functions O'(z) which are obtained from ~(z) through the 
following linear transformation: 

L ,325, 

In terms of @'(z) (3.25), the Dirac constraint equations (3.1)-(3.6) acquire the 
form: 

(_o=),,_ ( - 0 2 )  B" 1 = 0 ,  (3.26) 

~)~, - 
D"y+ ~. _ i( Oob o% +l)"Bb 

1 
D"B"-  ~7-( Oo" ohv+'~)"Y; ~ 

(3.27) 

[ D+"B" ] = 0 ,  

D - " - - - -  Y+~----(S"C)hd Y+ld 
2 a + 0 + 

D-"B h -  (V "c) aB 

(3.28) 

= 0 ,  (3.29) 

c +~d] = 
D " % ' -  D"bY+ ½c + ( S"b) dY 

[ D"bB~'+(vah) " 

/~-+0, [ ( D - + -  {) Y+~'" ] 
D +B ~ 

O, (3.30) 

(3.31) 

where D "b, D +, D +-" are as in (2.7)-(2.9) and 0+-  = u20", 0 "=- u~" 0 ~. Henceforth, 
the prime on 0 will be omitted. 

The constraint equations (3.30), (3.31) express the fact that the wave function 
0(z)  (3.25) is a harmonic SO(8)× SO(l, 1) invariant. This is natural generalization 
of the properties of the harmonic superfields belonging to the space .~e" 0 defined by 
(2.10), (2.11). 

The harmonic superfields (2.10) identically satisfied the harmonic equations (2.17) 
where the harmonic "spin" part ~ b  (3.15) is absent, since (2.10) do not carry 
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external overall SO(8) × SO(l, 1) indices unlike the case of 4~(z) (3.25). Therefore, it 
is natural to call Y+ ~O(z), B~(z) harmonic superfields with external SO(8) X SO(I, 1) 
indices (see also the appendix). In order to see their structure, one has to actually 
solve (3.30), (3.31) explicitly. 

To achieve this, one expresses first the functions Y+~"(z) and B"(z) in terms of 
new functions Y~(z) and B"(z) which carry external Lorentz indices but not 
external SO(8) x SO(l, 1) harmonic indices: 

Y+ s" = ( v + ='or" ) Y,, (3.32) 

8,'= (3.33) 

In terms of the new functions, the equations (3.30) and (3.31) reduce to the 
requirement that the fields Y~, B ~ are invariant under the orbital SO(8) x SO(l, 1) 
rotations of v + ~, u~ 

D +[B "Y~]=0' (3.34) 

D~h[ B.Y"] = 0  , (3.35) 

i.e. Y~(z), B~'(z) are general harmonic superfields (without external SO(8) × SO(l, 1) 
indices) belonging to the space ='~0 specified by (2.10), (2.11). The representation 
(3.32), (3.33) is unique because the harmonic objects u~ and (v + ~o") ~ have exactly 
the same "internal" SO(8) X SO(l, 1) properties as B"(z) and Y+ ~(z )  (recall eqs. 
(3.30), (3.31)): 

D a b (  1 , a c 1 , o+~o,) =- ( sab)a (v+~oa)"  ,-,,b ~ +V "~'C a (3.36) L~ U s = - -  ~ ) d U ~  

and, moreover, the objects u~ and (v+~o") '~ are the only harmonic objects to have 
the property (3.36) (and the correct SO(l, 1) charges). 

From now on we shall work only on the space Jd' of superfield wave functions of 
the form given by (3.32), (3.33) 

= [(v+ ] - .2B.(z ) (3.37) 

Since on ~ (3.37) the Dirac constraint equations (3.30), (3.31) are fulfilled 



364 1:2 Nissimov et al. / D = 10 super- Yang-Mills 

identically, i.e. realized operatorially, /~b  and /?-+ can be dropped from among 
the set of Dirac constraints to be imposed on the physical states. The remaining 
constraints ( -  02), /)~, D +~, /)-~ will be imposed only "weakly" as conditions on 
the physical states (3.26)-(3.29). In order to analyze their implications it is useful to 
perform the following transformation on Y~(z) and B " ( z )  in (3.37): 

Y~(z)  = ~i O + ( o - ) ~ , [ A ' ( z )  + i D ' ) t ( z ) ] ,  

B"(~) = A"(~) + O"X(~), 

(3.38) 

(3 39) 

where 

X ~ 1A;X t~ 

f x  + ~' " v ) , O , u , v ) d y  X ( z ) - - -  u , A ( x ( y , u ,  

x . ( y  ; u, ~) - ( ~  + u + . . - ~ ) ~ -  u+.y , 

(3.40) 

0 + -  +0r Up~ 

Inserting (3.38)-(3.40) into (3.37) one can easily show that the Dirac constraint 
equations (3.26)-(3.29) for the covariantly quantized N = 1 BS superparticle result 
in the linearized Nilsson constraint equations of the free D = 10 N = 1 SYM for 
A s, A ~ which become independent on (u, v). 

This statement, instead of being directly proved here, will arise as a simple 
consequence of the more general considerations in the sect. 5. 

4. Covariant BFV-BRST first- and second-quantization 
of the BS superparticle 

In this section we perform the super-Poincar~ covariant first-quantization of the 
N =  1 D = 10 BS superparticle in the BFV-BRST formalism and indicate its 
equivalence with the canonical Dirac quantization of the preceding question. We 
also write down a superspace free-field action for the linearized D = 10 SYM in 
terms of unconstrained superfields yielding as equations of motion the Dirac 
constraint equations (3.26)-(3.29) for the superfield wave function ~(z) of the 
N = 1 BS superparticle. 

From the mathematical point of view the Dirac system (3.26)-(3.29) is an 
overdetermined system of 33 matrix equations (33 = number ~f" of Dirac constraints 
( - 3 2 ) ,  D~, D +a, /) a) for only one vector-valued function ~(z). This overdeter- 
mined system is however consistent (integrable) since the linear operators ( - 0  2), 
/)~, D ÷~, D-~ acting on q~(z) (3.37) form a closed algebra under (anti-)commuta- 
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tion: 

( 0 + )  aft 

{b%bB}=-i 0~(-o2), (4.1) 

0] 
[~)--a, b - b ]  __ (0+)  2 V ab (__02),  (4.2) 

[b .,b°]= 
0 

i ~--~u 
UYh i 

o ~ (°+°'~ ') ~ ( - 0 2 ) ,  (4.3) 

[ D + , , / ) - h i  = C,b/~-++/),h = 0 (on the space o.Y (3.37)), (4.4) 

the rest of the commutators being identically zero. Here, once again the notations 
(3.13), (3.16), (3.17), (3.19) were used. 

The BRST charge Q0 corresponding to the operator algebra (4.1)-(4.4) precisely 
coincides with the zero mode (point particle) limit of QBaST (2.51)--(2.53) of the 
harmonic GS superstring, where the contributions of /~,b and D + are deleted 
(because we are working on the space J f  (3.37) of harmonic superfields). We write 
Qo in matrix form: 

Q0 = °'°'Y'c°~ [°'°~"]"~] (4.5) 
[ O ' o ' " ] ° '  O ' o ' " c  °~ ' 

0 
_ _ ~ ( x o + x ~ _ _  . +. Q(oVr)-c(-O 2 )+X.D"  (2i0 +) + , % D  

]OC 

[ 1 0 "  Ob -27 ~ c ) '  • + - a  gab 
+'7,  D 2 0 + 0 + - ½ ( 0  + ) ; S  "b (4.6) 

1 0 
Qo(Bm=c(-0 2)+X,~D '~-(2i0 +) (Xo+X)~c +irl~D +" 

• + --a vab +tT, D 0+ - ½ ( 0  + ) 27;V"b (4.7) 

,,, i7: (xo+o~v_~)(ur,,)°~o t ( 4 . 8 )  [°(°Y"] =-i(xe°~°°v+O+ ¢~(20 +) o,.j' 

.b 1 7[v/2 [ Oic(~cdu l ) (~dU)ab  0 } 
[Q(o •v)] = - 0--7-(X $a"o"v+l) (20+) 2 t X -  ' ~c  " (4.9) 
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The whole information about the algebra (4.1)-(4.4) is simply encoded in the 
nilpotency property of Q0 (4.5)-(4.9): 

Qo 2 = O. (4.10) 

In the BFV-BRST formalism Qo (4.5)-(4.9) is a linear operator acting on the space 
of ghost-haunted harmonic superfields. ~ consists of fields of the following 

form (cf. (3.37)): 

~(z, 71 _ F~/+~<,(z, 7) ] 
L ~"(z, 7) J 

(4.11) 

with the short-hand notations: 

( ~) a / ) a  Z ~ X l~, Oa~ UI~ , 7 -  (7A) - (c, X~,7+").  (4.12) 

The property that ~b (4.11) is a SO(8)× SO(1,1) harmonic invariant is now 
expressed by the requirement that the ghost-haunted generators of SO(8) × SO(1,1) 
annihilate q~(z, 7) (these equations replace (3.30), (3.31) which were fulfilled in the 
space W (3.37)): 

/) ++ 7+" 07 +" 77 " 0~--" ~ = 0 ,  (4.13) 

(Dob+,+. O ,+b 0 , °  0 _b _ lf l 
- -07£ ~ - 07.+ + - -07£ - 71 0 7 £  ] [ ~ ]  = O. (4 .14 )  

The explicit form of ~(z, 7) satisfying (4.13), (4.14) is given (in complete analogy 
with (3.32), (3.33)) as: 

1 a a a /~ Y / + ~ ( z , 7 ) = ( v  + o ) Y/~(z,7), ~ " ( z , ~ l = u , ~  (z,71 (4.15-161 

~ ( z , 7 1 =  E x, x, ~ ~{x}{~}( z,71 (4-17t . . . . . .  (n,  m)a  
{x}{,} 

Each coefficient field in the expansions (4.17), (4.18) is an arbitrary analytic 
a harmonic ghost-haunted superfield whose formal expansion in terms of v~ ~, u. 
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~ ( , . ~ )  = 
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Z [,;~. . . ,° .7+ ~' 7 +~-~ ~~ " 
/Ln . . . . . .  77 ] SO(8) singlet 

{~,){~}{x) 

×u~ ...u,+ux~...ux~ .... Y'{"}(~}~XI(x,O,c,x~), (4.19) 

where ~r stands for any ~.{x}{.} or y/{x}{.} which appear in the right-hand-side of (n~m) (n~m)a 

the expansions (4.18), (4.17). 
One can now perform a transformation of y/+~a, ~ in complete analogy with 

(3.38)-(3.40) and rewrite (4.11), (4.15), (4.16) in the form: 

] ~,+~°(z,~) e(z,7)-- ~°(,,7) 

i 

, ;  [d , (~ .  7) = o,x(z. 7)] 
(4.20) 

where X(z, ~7) is a functional of ~ " ( z ,  7) defined in complete analogy with eq. 
(3.40): 

X ( z ) - -  f~ u2~F'(x(y-;u,v),O,u,u;~l)dy , (4.21) 

The original harmonic superfield O(z) (3.37) enters in the ghost-haunted har- 
monic superfield 4~(z, 7) (4.11) as the zeroth order term in the ghost expansion: 

1 

n>  1 

Eq. (4.20) together with (4.22) implies: 

1 
- -  . n ~ , , A "  ~ o ( z ) ,  s~'"(z,~/) = a " ( z )  + E .!~1 "1 -. B .... 

n~>l 

1 
d U ( z , n )  = A " ( z )  + E .~.~"~...~l""A3~...,°(z), (4.23) 

n~>l 

where A'~(z), A"(z) are the D = 10 SYM supergauge potentials. 
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In what follows it will be very useful to employ the following condensed notations 
for the linear generators (3.26)-(3.29) and their respective ghosts: 

[ L A J - 0 2 D ' ~ D + ~ D  -~] 
7 A I c X~ 7 -"  7 +" . (4.24) 

In' terms of (4.24), the algebra (4.1)-(4.4) and the BRST charge (4.5)-(4.9) are 
written short-hand as: 

[G, L. } -= G L .  + ( -  1)'A'"+ %LA =/LLc,  

a 
Q0 = 7 %  + ~( - 1)'"7"7~f~-~. c97A 

(4.25) 

(4.26) 

In (4.25)-(4.26) c A denote the Grassmann parity of L A. The corresponding ghosts 
7 A have accordingly the opposite parity c01 A) = c A + 1. 

The key ingredient of the canonical BFV-BRST formalism [11] is that one can 
rewrite the consistent overdetermined system of (matrix) Dirac constraint equations 
(3.26)-(3.29) for 0(z)  (3.37) as a single linear matrix equation for ~(z,  7) (4.13): 

Qo~( z, 7) = 0. (4.27) 

An important property of (3.60) is that it possesses a ghost-haunted gauge invari- 
ance as a consequence of the nilpotency of Q0 (4.10)*: 

3a~(z,7)=QoA(z,7). (4.28) 

A fundamental result of the BFV-BRST quantization is the general theorem [11} 
about the equivalence of the BFV-BRST physical state conditions (4.27), (4.28) with 
the Dirac constraint equations for the physical wave function (using notations 
(4.22), (4.25), (4.26)): 

LAgO(z ) = 0, A = 1 . . . .  , j l r .  (4.29) 

Here is a brief illustration of the above general theorem. Indeed, inserting the ghost 
expansion of ~(z,  7) (4.22) and the similar expansion for the gauge parameter 
A(z, 7) in (4.28): 

1 AN a(~ ,n )  =ao(Z)  + ,,~112--n! 7A'" 7 aA~ Ao(z) (4.30) 

* Due to nilpotency of Q0 (4.10) A ( z ,  ~1) is defined itself only modulo transformation of the type 
(4.28): A - A + Qo A'  for arbitrary A'(z ,  7). 
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into (4.27) and (4.28) and employing the condensed notations (4.24)-(4.26), one 
obtains: 

LAq~(z ) = 0, (short hand for the Dirac system (3.26)-(3.29)) ,  (4.31) 

8(O(z) = 0, (4.32) 

1 '¢B+IL LAeO,(z ) + ( - - )  ,eOA(z ) --ff~eOc(z) = 0, (4.33) 

6aeOA( Z ) = LAAo( z ), (4.34) 

[(_l)'.E:'=,('.,+l)flk ~A'~'B'4" .... s°(z) - +n(_ - 1 )  ('c+'"')ZT=2('",+l) 

xfACBl~CBz...B.(Z))]antisymm(A,B ...... B.) =0, (4.35) 

n _ .. 

81@.,/~,...B.(Z)= [(--I) %Z' '('~'+I)(LBIAB." B,,(Z)-- ½(n--I)(--I) (~c+C'')Z2='(~'+l' 

×J;,..A.., ..,('))].n,,.y .... ,., . . . . .  ..,)' (4.36) 

for general n. Antisymmetrization in (4.35), (4.36) is defined as: 

Jg...  AS... = ( -- 1) ~'" +1)(,,+1)~ .. OA .. - (4.37) 

NOW, using (4.25) in the equivalent form: 

[ ( - 1 ) c • ( " + l ' ( t A L B - l f j C B t c ) ] a n t i s y  .... (AB) =0 (4.38) 

one can easily check that the general solutions of (4.33), (4.35) are pure-gauge ones 
(cf. OlD: 

eOA(Z) = 6Aq, A(Z ) (eq. (4.31)) for arbitrary Ao(z ) , 

*B~...B,(Z) = ~*B~...8,,(Z) (eq. (4.33)) for arbitraryAB~.. 8,, ~(z), (4.39) 

whereas the zeroth order term ~(z)  in the ghost expansion (4.22) is gauge-invariant 
(4.32) and satisfies the canonical system of Dirac constraint equations (4.31). 

Now, after establishing the equivalence between the BFV-BRST quantization 
scheme (eqs. (4.27), (4.28)) and the canonical Dirac formalism (eq. (4.31)), we can 
write down a field theory action principle yielding the whole overdetermined set of 
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Dirac constraint equations (4.31) as equations of motion. To this end it is sufficient 
to construct an action which to generate (4.27) as variation equation and to possess 
ghost-haunted gauge invariance under the transformation (4.28). The action, we are 
looking for, reads: 

So = lfdzdnI~I~(z,n)Qo~(Z,n). (4.40) 

H e r e / ]  is a linear operator fulfilling the properties (T denotes operator transposi- 
tion) 

/~T = / ~ ,  Qo T/~ =/4Qo- (4.41) 

Now, (4.41) together with the nilpotency of Qo (4.10) assure the invariance of S o 
(4.40) under the gauge transformation (4.28). Taking into account the explicit 
expression of Q0 (4.5)-(4.9) we find the following form of / ]  for the case of 
interest-second quantized N =  1 BS superparticle or, equivalently, free D = 10 
N = 1 SYM: 

1 
+ K 1  o+ 0 

(4.42) 

where Ka. 2 act on the arguments of the corresponding functions Y¢+ ~a(z, 7) and 
~ ( z ,  ~/) from (4.11) as follows: 

K1 : v + ~  . +' ~/+, ~+a, -F  l V ~ ~ , C - ~  - -  C , - - ~  - -  

, , ( ) - + w -+ ~ 4 . 4 3  K 2 v + 2 ---> - -  - -  o, , X ,~ --'> - -  X a " 

Thus, formula (4.40) is the superspace action for the linearized D = 10 SYM in 
terms of unconstrained (off-shell) superfields which possesses a Witten's type [36] 
BFV gauge invariance (4.28). 

5. H a r m o n i c  super f i e ld  r e p r e s e n t a t i o n  for  the  N i l s s o n  S Y M  c o n s t r a i n t s  

As we have already discussed in sect. 1, the complete on-shell description of 
D = 10 N = 1 SYM theory is given by the Nilsson constraint equations [15-18]: 

1 
F ~ -  g ( {  ~ ,  V "~} - 2i ~ ' ~ ) = 0 .  (5.1) 



E. Nissimov et al. / D = lO super- Yang-Mills 

We will use the standard notations: 
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F ~  D~A~ + i 3~A ~ + g[  A ~, A ~ ] ,  

F ~ =  a"A ~ -  a~A"+ ig[A", A~]. (5.2) 

The fundamental fields in the above equations are A " ( x ,  O) - the vector superfield 
gauge potential and A S (x ,  O) - the superfield Majorana-Weyl spinor gauge poten- 
tial. g denotes the coupling constant. 

The Bianchi identities for F "", F '" are in fact the consistency conditions for the 
overdetermined nonlinear system (5.1). Multiple application of these identities 
yields as a consequence of (5.1) the following additional equations for A ", A ~ 
[17,18]: 

F "~ - ( o u W ) "  = 0, (5.3) 

(5.4) 

(5.5) 

F'~F,, = g W o ,  W ,  (5.6) 

7 ; W = 0 ,  (5.7) 

where IV, is a Majorana-Weyl spinor defined by (5.3). 
Our aim now is to transform the nonlinear system (5.1), (5.3)-(5.7) into an 

equivalent  system of nonlinear equations in terms of harmonic superfields such that 
the linearized form of the latter to coincide exactly with the system of Dirac 
constraint equations (3.26)-(3.29) for the wave function of the covariantly quan- 
tized D = 10 N - -  1 BS superparticle. This will provide the complete proof that the 
covariantly quantized D = 10 N = 1 harmonic BS superparticle (2.37)-(2.39) de- 
scribes on-shell the (linearized) D = 10 SYM multiplet. 

To this end we regard A ~, A ~ in (5.1), (5.3)-(5.7) as harmonic superfields 
a + !  

(2.10)-(2.11), i.e. as functions on the extended superspace z = (x ", 0~, u¢, v# ~) 
[5-10] identically satisfying 

(D "b, D ) A~ , ( z )  . 

In order to insure the on-shell independence of A ~, A ~ on the auxiliary harmonic 
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variables (u, v) we add the harmonic differential equations: 

-+u[A~(z)) ] = 0 (5.9) 
D [A~( z 

(cf. the discussion in sect. 2 leading to eqs. (2.18), (2.19); the harmonic differential 
operators D "b, D -÷, D _+u appearing in (5.8), (5.9) are the same as in (2.7) (2.9)). 

Now, let us consider the following nonlinear field transformation: 

A.(z)  - ~ * ( z ) =  B°(z)  j,  

g+'~°(z) = ~ i (v+lo%-)~0  + ~ - l ( ~ ) A " ( ~ ) a ( ~ )  + - ~  ' ( z ) D ° ~ ( ~ )  , (5.11) 
g 

B " ( z )  = u 2 S~- l (z )A"(z)S~(z)  - - ~  l ( z )  O"~?(z) (5.12) 
g 

(here 0 + -  + u, 0 ). The superfield ~(z)  in (5.11), (5.12) takes values in the YM gauge 
group and it is a functional of A"(z), solving the equation (u• V")~2 = 0: 

f 2 ( z ) = P e x p { - i g f X  u : A " ( x ( y - ; u , v ) , O , u , v ) d y  ), (5.13) 

~ - =  ~;x~.  ~ , ( y  ; ~. v)  = ( , ~  + u+,u ~ ) ~ -  ~+~y . 

Now, eqs. (5.10)-(5.13) are easily recognized as the nonlinear (non-abelian) ana- 
logue of eqs. (3.37)-(3.40) related with the superfield wave function of the D = 10 
N = 1 BS superparticle. 

Let us now derive the nonlinear equations satisfied by Y++U(z) (5.11), B"(z) 
(5.12), which are implied by the (nonlinear) system (5.1), (5.3)-(5.9). First of all we 
get: 

^ + r+'~CCz) 
( b ~ h , D ) [  Be(z)  1 = 0 ,  (5.14) 

where 

~) ~b = D"b + 
vab  

00] /~-+= D - + +  5 
0 

(5.15) 
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with S ~b, V ~h the same as in (3.16), (3.17). Therefore, O(z) (5.10) is itself harmonic 
superfield with external overall SO(8)× SO(l, 1) indices belonging to the space J{~ 
(3.37). 

Further, acting with D +" on both sides of eqs. (5.11), (5.12) and using eqs. (5.9), 
(5.13), (5.3), (5.6) together with certain algebra, we obtain the following equations 
for q)(z) (5.10) with explicitly separated linear and nonlinear parts: 

b-°,(~) + 

D+"O(z) = 0, (5.16) 

[[v~ "(~,~)] 'y~ ] 
= O. (5.17) 

[v~- . (~f . ) ]  `') 

In (5.17), the linear operator f ) - "  is the same as in (3.29) (i.e. / ) - "  is the modified 
D " operator due to the harmonic "spin" part of /~,b and the non-zero SO(1, 1) 
charge matrix o f / ) - +  in (5.15). The nonlinear parts in (5.17) read: 

[Vf"(g)lz)](r)b=--ig[Y+ Ib, ~-~7-B "] 

Iv. °(+l.)] ~'~b 

+ [Y+>, ]+ rj~, ½ig~z- B" ig(S"C) bd +' Be], (5.18) 

1 

(a+). 

(5.19) 

In the course of derivation of eqs. (5.17) and below the following useful relation is 
used: 

y+~a(z ) -~- (U+iO ") ~2-1(z)ma(z)~(z) ,  (5.20) 

which is a consequence from (5.3) and (5.11). 
The next step is to operate with D ~' on both sides of eqs. (5.10), (5.12) and use 

eqs. (5.3)-(5.5) and (5.13), (5.20) to obtain (disentangling again linear and nonlinear 
parts): 

boo(z)+[[[v¢(~'tz)] (~)] 
Vl'(~I')l(')J =o, 

(5.21) 
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where/) ~ is the linear operator defined in (3.27) and 

[V~(OIz)](Y)~-2ig(v+2o h) -~-Y~:, -~g(v+~ouo b~) [Bb, B~. ] 

-ig(v+~o ") -dT((Y+~c,Y[~}-i[B~.,O+BC]), (5.22) 

, ~ 1 [ 1 y ; ,  O+B~ ] [V~(q~lZ)]~B)~=Zig(v+~o b) ~ -  ~ ' 

--ig(v+~oba~a ") ~7[B,.,Y;~]. (5.231 

Finally, from eqs. (5.7) and (5.6) and substituting eqs. (5.11), (5.12), (5.20) we get: 

= (-02)Y+~"(z) + [Vo(q~[z)] (v'o , (5.24) 

0= - ufi2-1( v,g"~ - gWo~W ) Yd 

= ( - O 2 ) B a ( z )  + [Vo(gplz)] (B)a , (5.25) 

where the nonlinear parts read: 

( [ ]) [Vo(eplz)l'rl~=-ig Oh[Bb, Y+~]+[Bb, v'bY+~"]+ O+Bh,~7-V'"Y +~ 

[ ( O ~ ( ' O + B " - g ( Y + ~ " ' Y , + ' } )  'Y+~] + 2ig O + Vi, "- 

[ ~cd ,  ab l rv,y+~] +B ~by~].  (5.26) Ft., ( S )  -2ig a ~.,(o I ~ v d  t, - i g [  ' cd 

[Vo(q~lz)] (")~- Ob(V"~B h) -- O+V"°( ~-~(  V: O+B ~'- g( Y+ ~", Y,+ ~ }) 

[ 1,~_7775( 'a+BC g{Y+*' Y~+'~}), o+B~] - 
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with the following notations: 
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W'"=_8~+ig[B%.], F'Ob=_O~Bt'-ObB~+ig[B~,B hI 

and (S~b), d as in (3.17). 
Thus, the nonlinear system (5.1), (5.3)-(5.7) of the Nilsson constraint equations 

and their consequences from the Bianchi identities together with (5.8), (5.9) imply- 
ing the on-shell independence of A~(x, O, u, v), A~(x, O, u, v) on the auxiliary 
harmonic variables (u ,v)  is reduced via the nonlinear field transformation 
(5.10)-(5.13) to the nonlinear system (5.16), (5.17), (5.21), (5.24), (5.25) for the 
harmonic superfields ~(z)  (5.10): 

D+°,~(z) = 0 ,  

b-° ,~(z )  + v J ( , ~ l z )  = 0, 

b°¢(z) + v?(¢l~) = o, 

(5.28) 

(5.29) 

(5.30) 

( -  0 2),~(z) + v0(,~lz) = 0, (5.31) 

with the nonlinear parts defined in (5.18), (5.19), (5.22), (5.23), (5.26), (5.27). (Since 
q~(z) (5.10) are harmonic superfields, (5.14) are identically satisfied.) 

Now we shall establish the inverse statement, namely, starting from the nonlinear 
system (5.28)-(5.31) for the harmonic superfields O(z) (5,10), we can exactly recover 
the original system (5.1), (5.3)-(5.7) in terms of the ordinary superfields 
A"(x, 0), A"(x, 0). To this end we consider the following nonlinear field transfor- 
mation 

q)(z) =- B~(z) --* [A~( z , 

1 
A"(z) = 2i(v +~o")~2(z)( ~ Y+~ (z))~2-t(z) - -D"~2(z)~2g l ( z ) ,  (5.33) 

A " ( z )  ~ ( z )  ° ° ~ -  = tdpB ( z ) ~  1(2") 

+~ 1 [wo+8,.(~ ) g{r+~c(  - . . e ( 5  ~ - z),r:~(~)}]~-~(~) 

i 
q- - Gq~+2(z) ~ - l ( z ) ,  (5.34) 

g 
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where the harmonic superfield ~)(z) takes values in the YM gauge group and it is 
functional of B~(z) defined by the equations: 

D+°b=0, (5.35) 

1 
~ 2 - 1 D - ~ 2  = - i g -~ -TB% (5.36) 

Note, that eqs. (5.17) (together with (5.19)) are the integrability conditions for the 
overdetermined system (5.36). 

From the explicit form of (5.33), (5.34) it is seen that the new fields A"(z),  A~(z) 
are harmonic superfields (cf. (3.36), (2.11)), i.e. the equations: 

(D~b, D +)LA.(z)] = 0 (5.37) 

are identically fulfilled. 
First, applying the harmonic operators D +" (2.9) on A~(z), A~(z) as defined by 

(5.33)-(5.36) and using (5.28), (5.29) and (5.19) we easily obtain: 

=°'[At(z) (5.3S) 

which together with the identically fulfilled (5.37) yields the on-shellindependence 
of A~(z), A~(z)  on (u,v):  

A " = A ~ ( x , O ) ,  A " = A " ( x , O ) .  (5.39) 

As a second step we consider the following expression: 

1 ( (  V "~, V¢}  _ 2i(Tab ) _ _ ~6 (o,)~¢F,  - _ _  
g 

1 
32(5!) (°"1 " " ' ) ~ ¢ F " ' " " ~ '  (5.40) 

where the covariant derivatives X7" = D ~ + g[A% • }, V" = 0 r + ig[A ~, .], are de- 
fined with the supergauge potentials from (5.33), (5.34). The coefficients of the 
o-matrix expansion in (5.40) are (cf. [6]): 

F " - - ( o " ) ~ B ( D " A ¢ + D ¢ A ~ + g ( A % A ¢ } ) - 3 2 A  ~, (5.41) 

F . .... ~, ~ (O~  . . . .  N5) ~¢(D~A B + D¢A ~ + g(  A", A ~ }) (5.42) 

with A ~, A" from (5.33), (5.34). 
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According to (5.39) F"  (5.41) and F " ~ " 5  (5.42) do not depend on the auxiliary 
harmonic variables (u, v), i.e.: 

F " = F " ( x , O ) ,  F"  .... " ' = F " x " 5 ( x , O ) .  (5.43) 

Now, using the nonlinear definitions (5.33), (5.34) for A", A" and the obvious 
relation 

{ D'~, DI~} = 2iO ~b, 

one can easily show that 

l ( z ) ( u ; F U ( x , O ) ) ~ ( z )  =O,  

b - l ( z ) ( u ; ~ . . ,  u,,~4 u,,  + F ~1 ' ~ ( x , O ) ) ~ ( z ) = O  . (5.44) 

+ ,~ ~4 + in (5.44) are arbitrary and since Since the harmonic coefficients u , ,  u , . . .  uu4u,, 
F", F ~ .... ,5 do not depend on (u, v), (5.44) actually imply: 

F"  = 0, F "1 ""~ = 0 (5.45) 

and, therefore, inserting (5.45) into (5.40): 

1 
F "t~= - ( {  V ~, lV ~} - 2i~ "~)  = 0 ,  

g 

which are exactly the original Nilsson constraint equations (5.1). 
As a third step we introduce a harmonic superfield W,~(z) in the following way: 

V+ ~°( z ) = ( v + ~o")"~2-1( z ) W,~( z ) h (  z ) (5.46) 

(i.e. W~(z)  = ~2(z)Y, ,(z)~2-1(z)  in the notations (3.32)). 
Now using eqs. (5.16)-(5.18) for Y+ }"(z), we easily get: 

D+~W,~(z)  = 0 ,  (5.47) 

which together with the identically fulfilled (D  ~'b, D + - ) W , , ( z ) =  0 implies, that W, 
does not depend on (u, v): 

W,~ = W,,(x,  0 ) .  (5.48) 
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Inserting (5.46) into (5.33) we get a relation between A ~ and W,: 

[2 l(o+ W ) " ~ =  i O+( ~-lA"~2 + l ~ 1D~2) . (5.49) 

Using u~A ~ = ig 0 + ~2 f2-1 (following from (5.34) by multiplying both sides with u~) 
we can rewrite (5.49) in the following form: 

~ - l ( z ) u ; [ F ' ~ ' ( x , O ) - ( o ~ ' ) ' ~ W B ( x , O ) ] ~ ( z ) = O ,  (5.50) 

where 

F "~ -~ D"A ~ + i O~A ~ + g[A", A ~ ] (cf. notations (5.2)). 

Thus (5.50) actually imply: 

F"~(x,  O) - (o~ 'W)"(x ,  O) = O, 

i.e. the original superfield eq. (5.3). 
Now, having established properties (5.39), (5.48), i.e. the on-shell independence 

on (u, v) of A ~, A ~, W~ defined in terms of Y+ ~"(z), B"(z)  through (5.33), (5.34) 
and (5.46), it is straightforward to derive the following consequences of the nonlin- 
ear system (5.28)-(5.31) for Y+ ~"(z), B"(z): 

~2-1(z)u;u"~[V"F~'(x ,O) - ( ( o ~ V ~ - e ' V u ) W ) " ( x , O ) ] ~ a ( z ) = 0 ,  (5.51) 

I • /Lv ~ ta-l(zl(o+':o°/'[v°W~(x,O) + ~,(o )~F~(x ,0) ]~(~)=0,  

O-l(z) u: [ v~F~"(x, o) - gw~w(x,  o)] ~(z) = o, 

~ 2 - 1 ( Z ) 1 2 ( U + ~ o b o a ) a [ ( ~ W ) ° ~ ( x , O ) ] 4 ( Z )  

(5.52) 

(5.53) 

= 0  (eq.(5.17)) (5.54) 

Once again, since the terms in the square brackets on the left-hand-sides of 
(5.51)-(5.54) do not depend on the harmonic variables (u, v), these equations4mply 
the rest (5.4)-(5.7) of the nonlinear system for the ordinary superfields 
A~(x, 0), A~(x,  0). 

= 0 ÷ D - "  Y+ t~oc~bv+~di 2 a + ~ ( z ) - - U , ~ .  , . _  ,z)  + a + [ v ; ° ( , l z ) ] ( r ' ~  
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This finishes the proof of the equivalence between the Nilsson constraint equa- 
tions (5.1) together with their consequences from the Bianchi identities (5.3)-(5.7) in 
terms of ordinary superfields A~(x ,O) ,  A~(x ,O)  and the nonlinear system 
(5.28)-(5.31) in terms of harmonic superfields Y+ ~'~(z), B~(z), where both sets of 
superfields are related through the nonlinear field transformation (5.10)-(5.13). 
Thus the system (5.28)-(5.31) provides alternatively the complete on-shell super- 
space description of D -- 10 N = 1 SYM. 

In particular one immediately notices that in the linearized case ( g =  0, i.e. 
V0(q,[z ), V~(~[z), V2 -~ (4)[z) = 0) the harmonic superfield system (5.28)-(5.31) pre- 
cisely reduces to the system of Dirac constraint equations (3.26)-(3.29) for the wave 
function 4,(z) of the super-Poincard covariantly quantized D = 10 N = 1 BS super- 
particle. 

6. Off-shell  superspace action for D = 10 S Y M  

In this section we shall review our general construction of action principle for 
arbitrary consistent overdetermined systems of nonlinear field equations [12] and, 
subsequently, shall apply it to derive a superspace action for D = 10 SYM in terms 
of unconstrained (off-shell) superfields (cf. also [12]). 

Let us consider the following general overdetermined system of JV'> 1 nonlinear 
equations: 

..~A (q,]Z) ------ LAO( Z ) + VA( e~]Z ) = O, A --- 1 . . . . .  ~ ,  (6.1) 

v~(q~]z) - ~ fdzl...dz,,+2v)"+Z~(z; zl,..., z,+2)~(zl)...~(z,+2). (6.2) 
n ) 0  

In (6.1) the function ~(z) is defined on a (graded) linear space ~ and it takes values 
in another (graded) vector space q/, i.e. has a vector index ~ = (~U(z)). Also, q,(z) is 
taken to be real. L A a r e  (graded) linear operators with at most second order 
derivatives and are, correspondingly, matrices (L A - (L~h))  in the vector space ~'. 
Clearly, VA(~lz ) = ([VA(q, Iz)] ~) are also vectors in ~ .  In the general discussion of 
this section the vector indices a, b will be suppressed for brevity. 

Comparing (6.1) with (4.29) we see that the system (6.1) may be considered, from 
the point of view of second quantization as nonlinear generalization of the Dirac 
constraint equations for a first-quantized system with first-class Dirac constraints 
{LA}, A = 1 . . . . .  .#'. Therefore the system (6.1) represents the nonlinear field 
equations of motion to be derived from an underlying field theory action which has 
to be a nonlinear generalization of (4.29) 

The necessary conditions for consistency of the overdetermined system (6.1) are 
obtained by multiple application of antisymmetrized products of the linear opera- 
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tors Ln on £"A(Olz) (6.1) and by requiring the result to vanish when eqs. (6.1) are 
fulfilled. The first consistency condition: 

LA~B(~Iz ) + ( - -1 )  "A'~+ l L B ~ , (  eplz ) = 0 

yields (cf. (4.25)) for the linear and nonlinear parts respectively: 

[L  A, L . }  - LAL . + (-1)~A~"+IL.LA =fAC.Lc, (6.3) 

LAVB( dpIZ ) + (--1)'"¢~+ I LBVA( eplz ) -- fACBVc( dp[Z ) 

= f dz'[av (olz)  --1)ca'B+ 1 ~VA(O[zl~q)(Z') ) [ + I6.4) 

( = 0 on the surface of equations (6.1)). 

In (6.3), (6.4) fat8 are in general linear operators and %, % are the Grassmann 
parities of LA, L 8 correspondingly. In eq. (6.4) the operators L A act on Vs(~]z ) 
defined in eq. (6.2) as on functions of z. The next consistency condition 

[Lc(- 1)*~+'CLAVe(q~lz)] antisymm (A, B,C)= 0 on the (6.1) shell 

gives using (6.3), (6.4): 

[ f ( 2 ) D E ( _ l ~ O f a  l ABC \ ' JAO]antisymm(A,B,c)VG(g~[Z) =0 ,  

where the operator f(2)DE is defined by: ABC 

f(2B)cDELE= ((--1)'D+'"+I { (--1)eDeC[ jAB' LC] + fAG fG% } )antisymm(ABC ) (6 .5)  

and antisymmetrization means the same as in (4.37): 

~ ' . . .  BA... = ( -- 1) (~* + 1)~,+l}jf... AB.. 

For most interesting systems it turns out that: 

(2 DE= 0 (6.6) BC 

Let us immediately note, that if the set of operators L A is viewed as a first-quan- 
tized system of Dirac first class hamiltonian constraints (cf. (6.3) and (4.25)), then 
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f~2) DE defined by (6.5) is precisely the so called second order BFV structure A BC 

function [11]. Its vanishing (6.6) means that the corresponding hamiltonian system is 
first-rank, i.e. the corresponding BRST charge does not possess higher order ghost 
terms, as in (4.26). 

Our general construction of an action principle for the system (6.1) works under 
the following general assumptions: 

(i) The number N b of bosonic operators L A in (6.1) (i.e. with ~A = 0) has to be 
odd; 

(ii) The linear operators L A must be functionally independent; 
(iii) Condition (6.6) holds. 
Condition (iii) means that the only nontrivial consistency conditions for the 

system (6.1) are given by (6.3), (6.4). 
From the point of view of second quantization, conditions (ii) and (iii) mean that 

the underlying first-quantized system of Dirac first-class constraints { L,  } is BFV- 
irreducible and first-rank. 

Since the system (6.1) comprises JV'= N~, + Nf > 1 matrix equations it is of course 
impossible to find an action functional S = S[O], depending on O(z) alone such 
that (6.1) would arise as equations of motion 6 S / 6 ~ ( z )  = O. 

Our general construction of an action principle for the overdetermined system 
(6.1) proceeds in the following series of steps. 

The first step is to rewrite the overdetermined set (6.1) of JV" (matrix) equations 
as a single (matrix) equation in terms of a (vector valued) field ¢b(z, 7) depending 
on auxiliary variables collectively denoted by 7- The original field qS(z) from (6.l) 
e n t e r s  as~ 

1 
~ ( z , n )  = Z n--s. nA'''-nA"~'A .... A,,(Z). (6.7) 

n~> 1 

To this end we take: 

°) / = 1  . . . . .  Nh, c~=l  . . . . .  Nf, A --1 . . . .  , J f f = N f + N  b 

(6.8) 

to be the ghost variables associated with LA,  i.e. having opposite Grassmann parity 
cO/A) = ~A + 1. Since ,~(z) was taken to be real, the ghost-haunted field ¢b(z, 7) is 
likewise real. Then (6.7) is exactly the ghost-haunted wave function (4.22) entering 
the BFV-BRST quantization (4.27)-(4.28). 
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The new single (matrix) equation for Cb(z, ~/) replacing the system (6.1) is of the 
following general form: 

Q(~blz, 71) =- Qo~(Z, ~1) + Y/~(~]z, ~/) = 0 (6.9) 

zc"(~[z,~)~ Z fdz~d~l...dz.+,d~.+, 
n>~O 

x ¢ ~ ' + ' ) ( z , , ;  z , , , ,  . . . . .  z . + , , , . + , ) e ( z , , , , )  .. e ( z . + , ,  ~.+,) .  

(6.10) 

The linear operator Qo entering (6.9) is the BRST charge [11] corresponding to the 
algebra (6.3): 

3 
Qo = ~ALA + }(- 1)'%18~CfA8 o~IA (6.11) 

and zv'(~, z, ~) possesses the properties (80/) =- Hf=18(~)) :  

fd, 8(n)Yr(~lz, n)=0, 
0 

fd~16(~)~--yC/ ' (~lz ,~l  ) -- VA(@Iz ). (6.12a, b) 

Eqs. (6.11), (6.12b) ensure that the single equation (6.9) for ~(z, ~) contains the 
original nonlinear system (6.1): 

o f d n S ( n  a = )ff~-AQ(~[z,~) = L , $ ( z ) +  VA(@[Z ). 

Let us point out that in each ghost integral first the integration over the fermionic 
ghosts c i (6.8) is performed: 

- S', .)] f d c c i , . . ,  c i~t = ~MN(il'"iub (6.13) 

Clearly, (6.11) tells us that (6.9) is precisely the appropriate nonlinear generalization 
of the BFV equation (4.27), i.e. the BFV physical state condition. 

The second step is to find the gauge invariance exhibited by the new single 
equation (6.9) such that the equations of motion implied by (6.9) for the "non- 
physical" part ~(z ,~)  of the ghost-haunted field (/)(z,~/) (6.7) should have 
pure-gauge solutions, whereas eqs. (6.1) for the original field ~(z) should be 
gauge-invariant. This gauge symmetry must yield the appropriate nonlinear general- 
izations of (4.28), (4.32), (4.34), (4.36). 
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The required gauge invariance has the form: 

= f d z ' d , ' a ( z ' , , ' )  8~(z ' ,  7f ) 

8;¢(~1z'  ~/) (6.14) = Qoa(z,~l)  + fdz'd.'A(z',,') 8~b( z', 7') 

and the gauge invariance of (6.9) under (6.14) implies*: 

,, 8Q(~lz,  T/) 
f dz' dn' Q( ~lz', n l ~(-z'-~5 - 0 .  (6.15) 

Inserting in (6.15) the expansion (6.9) for Q(~blz', ~') one gets: 

Qo2=0 

(i.e. Qo is a nilpotent operator which is true by construction, see eqs. (6.11), (6.6)), 
and 

Qo~(Olz ,  ~) + f d z ' d ~ f  [Q0#(z ', 7') + ;g'(tblz', ~/')] 8q~(z', w') - 0. (6.16) 

Therefore, it is natural to call eq. (6.15) the nonlinear nilpotency condition. 
Also note, that due to (6.12a), the original field O(z) is inert under the gauge 

transformation (6.14): 

8 ,¢(z)  = f d n  8(7) 8,~(z,  7) 

fJ 1 =fdz'dn'A(z ' ,o ')~(z, ,n,  ) d76(n)Q(~lz, n) =0 

exactly as in the linear case (4.32). 

* In fact, due to (6.15), the gauge parameter A(:,  7) in (6.14) is defined itself only modulo nonlinear 
transformations 

r , . . . .  8Q(q~lz, ~) 
A ( z , n )  - A ( z , n )  +Jd~ dr/ A (z ,~ ) ~ ( z ~ ,  ~ 5  . 
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The third step is to derive the action, invariant under (6.14) and producing (6.9) as 
equation of motion. It is easily found to be: 

s=  fdzdnJq@(z,n)O(q, lz,n) 

= ~fdzdnfI~(z,n)Qo(r~lz,n) + fdzdnI~Cb(z,n)~(cl, lz,n) (6.17) 

with notations explained as follows. The linear operator /4 is defined to fulfill (T 
denotes operator transposition): 

/~T = / ~ ,  Q0 T/~ =/4Qo-  (6.18) 

A typical form of H is I4Cb(z, 7) = RO(Ol z, 02 z) where R is a matrix acting on the 
vector-valued field, 01,2 are numbers taking the values _ 1, _+i (cf. (4.42), (4.43)). 
Let us recall that, since ¢b(z, ~/) is real, the free part of the action (6.17) is bilinear 
(instead of hermitean) form in (b. The functional Q(Cb]z, 7) is defined through the 
relation: 

1 + f d z ' d , ' ~ ( ~ ' , , ' )  8~(~,,~, ) O(~ lz , , )  = 0(~1~,~) 

which simply means: 

(6.19) 

Q(q'lz, 7) = }QoCb( z, 7) + ~(Cblz, ~), (6.20) 

where ~/?((blz, 7) is given by a series of the same form as for Y/'(~[z, ~/) (6.10) with 
additional multiplication of each Y/" (" + 2) by the factor (n + 3)-1: 

1 
~ ( q N z ,  n) = E fdz ld~l . . .dz ,+zdn ,+2 

n>_.o n + 3 

x ~ ' + 2 ~ ( z ,  7; z,, 7, . . . .  z,+2, ~ ,+2 )e (z , ,  7 , ) . . .  ~(zo+2, ~.+~).  

(6.21) 

Since Q(q)lz, 7) (6.20)-(6.21) enters the action functional (6.17) where one can 
freely symmetrize the fields q)(z, 7) entering in the various terms, we immediately 
find that Q (6.20) or, equivalently, Q (6.9) should satisfy the antisymmetry 
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condition: 

812IQ( ~lz, ~) 812IQ( ¢]z', ~l ') 
(6.22) 

The minus sign in (6.22) is due to the anticommutativity of the ghost measures 
( r e c a l l  N b ~ number of c ' =  odd): 

f dx dc f dx' dc' = - f dx' dc' f dx dc 

Now, it is straightforward to show that the action (6.17) is indeed invariant under 
the gauge transformation (6.14) provided the nonlinear nilpotency (6.15) and the 
antisymmetry condition (6.22) hold. Clearly the action (6.17) is precisely the 
nonlinear generalization of the free BFV-BRST action (4.40). 

The final step is to derive the explicit expression of ;v'(4~4z, ~/) (6.10) such that 
(6.15), (6.22) and (6.12) are satisfied. Using (6.11) and the consistency conditions 
(6.4) and inserting them into eq. (6.16) we find: 

f dzl.., dzn+ 2 nAVA~n+ 2)( 
n>~O 

(6.23) 

and similarly: 

= z  ,,>on+3 dza'"dz'+2~AVA°'+a~(z; zl . . . . .  z,,+2) o(zl,  7) . . .  o(z,,+2, n), 

(6.24) 

where the kernels V) "+2) are exactly the same as in (6.2). 
Eqs. (6.23), (6.24) are the principal result in the present general construction since 

now each object Q0 (6.11), ~ (6.21), (and similarly ~'(6.10)) entering the action 
(6.17) is explicitly expressed in terms of objects { L A }, { V) "+2) } entering the original 
nonlinear system (6.1), (6.2). 

Let us now apply our general action principle to construct an off-shell superspace 
action for D = 10 SYM. From the mathematical point of view, the system (5.1), 
(5.3)-(5.7) is a consistent overdetermined system of nonlinear equations for the 
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supergauge potentials A"(x, 0), A~(x, 0). However, one can easily show that it 
cannot be written in the form (6.1) with Lorentz-covariant and independent linear 
operators L A. On the other hand, it was shown in detail in sect. 5, that the nonlinear 
system (5.1), (5.3)-(5.7) is equivalent to the nonlinear system (5.28)-(5.31) in terms 
of the harmonic superfield 

~(z)- [ ~O(z) ' 
which is related to A ~, A" from (5.1), (5.3)-(5.7) through the nonlinear field 
transformation (5.10)-(5.13). Therefore, the harmonic superfield representation 
(5.28)-(5.31) of the D = 10 SYM on-shell equations (5.1), (5.3)-(5.7) is a consistent 
overdetermined system of nonlinear field equations fulfilling all conditions (i), (ii), 
(iii) above for our action principle to work. Indeed: 

(i) The number of bosonic operators LA: ( - 0 )  2, D +", / )  ~ from (5.28) (5.31) is 
odd (=  17); 

(ii) All linear operators {LA}=-{ ( -O)2 ,1 )%D+", I )  "} in (5.28)-(5.31) are 
BFV-irreducible, i.e. functionally independent; 

(iii) The set of {L A } is first-rank, i.e. the second order BFV structure function 
vanishes (6.6). 

Thus our action principle (eq. (6.17)) yields the following superspace action in 
terms of off-shell unconstrained superfields for D = 10 SYM: 

S s v  M = l fdzdn £I~(z, ~)Qoq~(z, 7) 

+ fdz d~ iCIqfi(z, ~)[cVo(q~(- , ~/)]z) + x~V~(~(" ,  ~)]z) 

+ ~l+ V2 "({I} (-,  ~l)lz)] (6.25) 

[e/+~°(~, n) ] _ [(v+xo°)°~'.(~, n) ] 
~,(z, ~) - e a ( z  ' ~) ~';~(~, ~) ' 

(6.28) 

with the notations: 

Z ~- X/~, , U ~ ,  /)~- , 

dz =- (dt°x")(d160~)(dS°u~,)(dB2v 2 ~ ) 

a , b  a, ++_ 

(6.26) 

rl=-(~l"~)=(c,x,~,~l+-a), dr/~- dc (d16x,~)(dSrl+a) (d8~/-~), (6.27) 
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where ~'~(z, ~), ~"(z,  7) are ghost haunted superfields without external SO(8)× 
SO(l, 1) indices (cf. (4.11), (4.15), (4.16)) and the functionals 

Vo(,~(., ,Olzt, v;(e(.,  ~)1.), v, "(e(., ~)1.) 

in the interacting part of Ssv M (6.25) are exactly the same as (5.26), (5.27), (5.22), 
(5.23), (5.18), (5.19), where the usual real harmonic superfields Y+ ~'(z), B ' ( z )  are 
substituted with the corresponding real ghost-haunted harmonic superfields 
°3'+ ~(z, 7/), ~"(z ,  ~/) (6.28). 

The way the supergauge potentials AS(x, 0), At(x ,  O) of D = 10 SYM enter in the 
action (6.25) is given by the following nonlinear ghost-haunted superfield transfor- 
mation: 

[~+J"(z ,  ~) ]  (eq. (6.28)) ~ [ d ' ( z ,  ~) ], 
~- ( . , , )  [d.(z,~tJ 

(6.29) 

q'(z, nl 

r . ° ]1 
½i(.+'.'o 1°o+[~-'(.,n)~ ' (z,~)~(.,~t+ ~ '(z,~)D ~(.,,) 

[ : 1 . ;  ~-l(z, n )d" ( . ,  nt~(z, 7) - - ~ - ' ( z ,  71 0.~(z, 71 g 

(6.301 

where f2(z, 7) is a functional of d r ( z ,  7) taking values in the YM gauge group and 
it is defined in complete analogy with (5.13): 

~(.)='exp{-i.f'.j"(xI.-;.,.),O,.,.;,)d~ }, (6.31) 

x -=- u~x  ~, x~(y - ;  u, v) =- (~1 ~" + u+"u-~)x~ - u+~y -. Thus, the zeroth order term 
in the ghost expansion of q~(z, 7) (6.29)-(6.31) exactly coincides with the harmonic 
SYM superfield ~(z) (5.10)-(5.13), and, therefore, the usual SYM supergauge 
potentials AS(x,  0), A"( x, O) are identified as the harmonic ( u, v) independent parts 
of the zeroth order terms in the ghost expansions (4.23) of d~(z ,  ~/) d~(z ,  7) from 
(6.30) exactly as in the linearized case (sect. 4). 

As a final remark, let us stress that the superspace action (6.25) is also manifestly 
invariant under the superspace YM gauge transformation of the ghost-haunted 
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superfields z~C~(z, ~), ~¢~(z, 71): 

dr( . ,  n) n) = n ) ( d r ( z ,  n) - - ar  n ) ,  
g 

z~'C~(z,'q)---~(d'~)C'(z,B)=~-l(z,~l)(~'~(z,~q)+~D'~)~(z,~l). (6.32) 

This is because the action (6.25) depends on d ~ ( z ,  ~), zdr(z, ~) only through the 
ghost-haunted superfield expression ~b(z, ~) (6.30) which is itself invariant under 
(6.32). 

Let us recapitulate the results of this section. We described here a general 
construction [12] of an off-shell action principle for arbitrary consistent overdeter- 
mined systems of nonlinear field equations. The main tool is the BFV-BRST ghost 
formalism [11]. The action (6.17) resembles the Siegel-Zwiebach-Witten-Neveu-West 
[36] construction of (super)string field actions but does not involve the peculiarities 
(star products, Chern-Simons forms etc.) specific to the field theory of the 
Ramond-Neveu-Schwarz (RNS) (super)string. 

The main application presented here is the construction of a superspace action 
(6.25) for D = 10 N = 1 SYM in terms of unconstrained (off-shell) superfields. 
Because of bosonic variables (u, v, ~A), these superfields contain an infinite number 
of pure-gauge and auxiliary fields which are eliminated through the Witten-type 
nonlinear BFV gauge invariance (6.14) and through the usual superspace YM gauge 
invariance (6.33) of our superspace action. Let us particularly stress that, in our 
formalism, the YM gauge invariance (6.33) is not a part of the Witten-type gauge 
invariance (6.14) but it is an independent symmetry of our action (6.25). This 
phenomenon is most easily understood in the context of the heterotic GS super- 
string. Already its zero-mode (point-particle) limit contains the gauge invariant 
SYM whereas in the RNS formalism the YM gauge invariance arises from Witten's 
gauge invariance at the first excited string level in the NS sector. 

7. Conclusions and outlook 

The main objectives of the present paper may be summarized as follows. 
(i) We describe in a pedagogical way the main ideas and concepts in the 

harmonic superstring program aimed at a consistent manifestly super-Poincar6 
covariant quantization of space-time supersymmetric strings (the GS superstrings). 

The first crucial step is introduction of auxiliary harmonic variables allowing 
covariant disentangling of local fermionic gauge-invariances of the superstring. The 
next crucial step is the introduction of additional fermionic string coordinates 
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enabling us to convert the set of mixed first- and second-class Dirac hamiltonian 
constraints of the GS superstring into a set of snper-Poincar6 covariant, functionally 
independent (BFV-irreducible) first-class constraints only. 

This is inevitable in order to preserve manifest supersymmetry (Dirac brackets 
due to the second-class constraints would ruin the superspace geometry by causing 
the superstring coordinates x ~, O~ not to commute among themselves). 

The introduction of the auxiliary harmonic and fermionic string variables is 
accompanied by introduction of appropriate additional gauge invariances beyond 
those of the GS superstring such that the new system (called harmonic GS 
superstring) is physically equivalent to the original GS model. We also made contact 
with a more recent formulation [24] extending the harmonic superstring program 
from the canonical hamiltonian formalism to the lagrangian functional-integral 

quantization formalism. 
(ii) The effectiveness of the harmonic superstring program was further explicitly 

demonstrated by providing the full first-quantization analysis of the zero-mode 
(point particle) limit of the GS superstring - the D -- 10 (N = 1) BS superparticle. 
The main result here is the derivation of the linearized Nilsson curvature constraints 
for D = 10 SYM from and establishing their equivalence to the manifestly super- 
Poincar~ covariant Dirac constraint equations for the D = 10 N = 1 BS super- 
particle. 

(iii) The preceding result was further generalized to the full nonlinear case by 
deriving a harmonic superfield representation of the nonlinear Nilsson constraints 
of D = 10 SYM reducing in the linearized case to the system of Dirac constraint 
equations for the D = 10 N = 1 BS superparticle. 

(iv) We described the main steps of our construction of a covariant action 
principle for a very broad class of consistent overdetermined systems of nonlinear 
field equations. The only conditions for their structure are the following. The linear 
parts of the equations are identified as a system of quantized Dirac first-class 
constraints belonging to an underlying particle-like (or string-like) system which are 
BFV-irreducible and first rank (i.e. the second and higher BFV structure functions 
vanish and the corresponding BRST charge does not exhibit neither higher ghost 
terms nor ghosts for ghosts). In particular, a system of consistency equations on the 
interacting parts of the above nonlinear equations was formulated (eq. (6.4)) which 
allows in principle to find interacting (nonlinear) modifications of Dirac constraint 
equations for particle-like and string-like systems, i.e. to find the corresponding 
interacting field theoretic equations of motion. 

(v) Our general action principle for overdetermined systems of nonlinear field 
equations was applied to derive a superspace action for D = 10 SYM in terms of 
unconstrained off-shell superfields, starting from the harmonic superfield represen- 
tation of the Nilsson curvature constraints for D = 10 SYM. Thus, a solution was 
found to the long standing problem of an off-shell superspace formulation of 
D = 10 SYM. The same formalism can be applied to D = 4 N = 4 SYM and similar 
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supersymmetric gauge theories which are formulated in terms of geometrical con- 
straints on some of the relevant curvatures. 

Although the D = 10 SYM action (6.25) is manifestly off-shell supersymmetric, 
this is at the price of having covariant nonlocal factors ( O +) - 1 (recall O + - v ÷ 1 ~ v + ~). 
One may hope that by combining the present approach of section 6 with the 
formalism developed in [37] one will be able by further appropriate nonlinear field 
transformations of (b(z, ~) (6.28) to eliminate the nonlocality (0+) -1 factors. 

The next most ambitious task is to apply the formalism presented in this paper to 
attack the issue of a manifestly super-Poincard covariant field theory of the GS 
superstrings. The main problem here will be to find solutions for the field-theoretic 
superstring vertices coming from the string generalization of the consistency eqs. 
(6.4). 

Appendix 

G E N E R A L  H A R M O N I C  SUPERFIELDS A N D  P U R E - G A U G E  N A T U R E  
OF THE H A R M O N I C  VARIABLES 

In the D = 4 harmonic superspace approach [20] harmonic superfields are defined 
as functions on the extended N-superspace z = ( x  ~, 0,~; u), (i = 1 . . . .  , N)  where the 
variables u belong to a compact homogenous space G / H .  

For N = 2, 3, G is the group of automorphisms of the extended super-Poincard 
algebra G = SU(N),  whereas H = [U(1)] N-1 [20]. 

In the present D = 10 case the appropriate homogenous space £,P/SO(8) x SO(1, 1) 
is noncompact,  since the analog of the group-space G is here the space ~ defined 

+-~ H SO(8) x SO(1,1) is the internal by the kinematical constraints (2.4) on u~, v, . = 
a 1 

group of local rotations of u,, v +~ (2.4). The fact that our harmonic superfields 
qa(z), z - (x ~, 0~, u~, v~ +~) are actually functions on L,°/SO(8) × SO(1,1) is expressed 
by the property that they identically satisfy: 

D " % ( z )  - ( D ~b + E o b ) e p ( z )  = O, (C.1) 

b + ~ b ( z ) = ( D  + - O ) 0 ( z ) = 0 .  (C.2) 

In (C.1), (C.2) Dub, D +- are the same as in (2.7), (2.8), i.e. they are "orbital" parts 
of the SO(8) and SO(I, 1) rotations, whereas ~ob denotes the "spin" part of SO(8) 
and 4 denotes the SO(I, 1) charge matrix. 

In general, O(z) may be a direct sum of components transforming under different 
inequivalent representations of the "spin"-part  ~ b  in (C.1) and possessing different 
half-integer or integer SO(I, 1) charges in (C.2). 

This is precisely the case in the present formalism see eqs. (3.25), (3.30), (3.31). 
Therefore, it is sufficient to analyze (C.1), (C.2) for harmonic superfields of the 
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form: 

1 1 { c } - = ( q  . . . . .  c,) ,  { + ~ d } - - ( + 2 d  , . . . . .  + 2d,,) ,  

_ _  1 l ~e}-=(-' 5 e  I . . . . .  2e,,) , (C.3) 

with an overall SO(1,1) charge q +  ½ ( m -  n) (q is integer) and whose external 
SO(8) indices ( q  . . . . .  c l ) , ( d  I . . . . .  d , , ) , ( e  1 . . . . .  e,,) transform respectively under the 
harmonic (v), (s) and (c) representations [10]: 

D ~ h +  E V~b( i )  + S~h(J) + S"b(k)  0 ( z ) = 0 ,  
i = 1  j ~ l  k ~ l  

(C.4) 

[D + - ( q + ½ m -  ½ n ) ] @ ( z ) = 0 ,  (C.5) 

In (C.4) Vab( i )  denotes the action of V ~h [10] on the ith index c~: 

V~b( i ) O (  z ) =- ( V~h )("(,;(o{q)( {' . . . . . . .  ; ...... .,){+~J}{ ~} 

and similarly for S " b ( j ) ,  S " b ( k ) .  
c Now, recalling the action of D a~' on v ± ~{~c and u~ [10] we find that each external 

1 1 5ek) {)(z) can SO(8) x SO(l, 1) index c i, (+  2dj),( - of (C.3) be unambiguously 
c, +~oa~)%(v  '~o~) & On the other hand the integer charge q can saturated by u~, (v 

be unambiguously saturated by q vectors u / - =  v +- ~o~v ±~ (depending on the sign of 
q). Therefore: 

+ . . .  ± q ('t (V+=od~) ~' ' ~" {~(z) (eq. ( C . 3 ) ) = u , ,  u , u , . . . u , , X  ' . . . ( v + 2 o  a ' )  

• - ~-~, ~"~,{~}{"} ~ ( v - l o ' e l )  ~I . . ( v - t j  } ~{~}{~}(z), 

{ . }  - (.~ . . . . .  . , ) ,  

{ • }  - ( / 3 ,  . . . . .  B,,), 

{ . } - ( ~ ,  .. . . .  ~q) ,  

{~}-= (~ . . . . ,~ . , ) ,  

where the coefficients superfields identically satisfy: 

(D ub , D -+~'{~}{"} l ,~  j,e{,,}{/3} ~ )  = 0, 

i.e. they belong to the space .Y{~o 

(C.6) 

(3.36), (2.11) of harmonic superfields without any 
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external SO(8) × SO(l, 1) indices. By this we mean fields of the form: 

{~}{x}{o}{,}lP+ ] 

× u ~  .. u+aN × u,, . . .  ~xv{~}{/~} 

Here the coefficient (ordinary) superfields ~{2/}~/{~ }{x }{0}{~}(p, 0) satisfy the fol- 
lowing irreducibility properties which guarantee the uniqueness of the harmonic 
expansion (C.6), (C.7): 

a,(~I{,}{~}(x}{p}{ (i) ,e(~}{l~} ~}(p, 0) are symmetric and traceless with respect to all 
Lorentz-vector indices. 

(ii) They are transverse with respect to { ~ }, { X }, and also they are transverse with 
respect to {/, }, { ~ }, { O } if the index set { ~ } is nonempty and they are transverse 
with respect to ( ~ }, {)t }, { r } if the index set { )t } is nonempty; 

(iii) ,{u}{~}{~I{x}{0I{,}(p, 0) are o-traceless with respect to any pair of a Lorentz- -e{,~}{/~} 
vector and a Lorentz-spinor indices of the form (tx,,c~y),(~,,c~j),(pi,%),(b%fij), 
(X, , f ly ) , (r i ,  fij ). Recall that Ù-tracelessness of an arbitrary spin-tensor X ~ ' , . . .  
means (%)~" 'X"~, . . .  = 0. 

Next, we observe that harmonic superfields belonging to ~-~0 in fact depend on 
the Lorentz-spinor harmonics v ~  not in an arbitrary way but only through the 

1 1 

light-like composites u~ = v ± :%~ +2 (see (3.36), (2.11)). Therefore the field from Jvt~0 
a + depend only on 45 independent combinations of the harmonic variables u~,, u~ 

(accounting for their kinematical constraints), which implies that the general solu- 
tion of the 45 Dirac constraint equations 

( D  "h, D +, D +", D " ) @ ( z )  ~- O, (on S o  (3.36), (2.11)) (C.8) 

is @(z) -= qS(x, 0), i.e. it is constant with respect to (u, v) (cf. (2.19)). 
The analog of the Dirac system (C.8) for the more general harmonic superfields 

(C.6) with external SO(8) x SO(l, 1) indices reads: 

( / )  "b,/3 +, D +",/3 ")q)(z) = 0, (C.9) 

where /3,t,, 13 + have "spin" parts y,h, 4 as in (C.4), (C.5) and /3 " accordingly 
reads (3.29): 

o"  o,, r o ,  ' (c10) /3 "=-D " ~ + 4 -  a + -  • 

Let us point out that the system (C.9) is consistent only on-shell, i.e. when 
( - O 2 ) 0 ( z )  = 0, since (recall eq. (4.2)): 

[b °, b-q = (a  ÷) 
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Now, inserting the general expression (C.6) into the system (C.9) and using the fact 
that the D's annihilate the SO(8) y's [10] we get precisely eqs. (C.8) for the 
coefficient harmonic superfield ,~{ "/( ~1 / z). Therefore, the general solution of eqs. 
(C .9 )  r e a d :  

q, ( Z ) lo._~h~,l = U ± + q c, t~l . . .  Up.qUvl . . .  blul 

°' 20,'o,) °°' . . . . .  j "e(,~}(fl) ~ ~,  . 

( c .11 )  

Eq. (C.11) is the precise statement of the on-shell pure-gauge nature of the auxiliary 
harmonic variables (u, v) (2.4) for arbitrary harmonic superfields carrying external 
SO(8) × SO(l, 1) indices. Namely, on-shell, the whole dependence of ~(z) on (u, v) 
is only through a f i x e d  monomial in (u, v) carrying the external SO(8)× SO(l, 1) 
indices of e?(z) whereas the physical fields are contained in the ordinary superfield 
O(~}(~}~x 0). (,~}{#}~ , 

Property (C.11) exactly parallels analogous properties of D = 4 harmonic super- 
fields in [20]. 
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