D.A. Trifonov Web page

Back to Publications ,        Съдържание на Български: 
 
 

             CLASSICAL MECHANICS

                     Dimitar Trifonov     (INRNE, "Avangard", Sofia 2002)
 
 
 

CONTENTS   (extended)
Paragraphs and subparagraphs noted by star * may be omitted at first reading.

Contents (in Bulgarian)........................................................................... 3
Preface  ............................................................................................ 5
Abbreviations ..................................................................................  6
 

Chapter 1.  BASIC MECHANICAL AND GEOMETRIC NOTIONS

1. Basic notions of classical mechanics....................... ......................    7
     1.1. Basic notions. 1.2. Space and time. 1.3. Mechanical quantities.
     1.4. State, mechanical laws and principles.

2. Vector and affine spaces ............................................................... 13
     2.1. Vector space.  Matrices as operators. Vectors and tensors.  2.2 Scalar
     product and norm.  Linear functions on vector space. External forms.*  2.3. Affine
     space. Distance.  Parallel transport*. Examples of affine spaces. Manifold.*
     Differential forms.*  Norm and distance.*  

3. Cartesian, spherical and cylindrical coordinates............................     29
     3.1. Curvilinear coordinates in E_n.  3.2. Spherical and cylindrical
     coordinates in  E_3 .

4. Generalized coordinates, degrees of freedom, constraints ............      34
     4.1. Degrees of freedom and generalized coordinates. 4.2. Constraints.

 Summary.................................................................................      37
 Problems.....................................................................................  38
 

Chapter 2.     LAGRANGIAN FORMULATION OF MECHANICS

5. Least action principle.................................................................  39
     5.1.Formulation.  5.2. Lagrange equations.  5. 3. Freedom in the
     choice of Lagrange function.

6. Lagrange equations for particle system. Reduced action ...............   45
     6.1. Free particle. 6.2. Particle in external field. 6.3.  N  particles.
     6.4. Generalized momenta and forces. 6.5.Generalized potential forces
     and friction forces.  6.6. Reduced action. Examples.  Historical notes. *

 Summary.....................................................................................57
 

Chapter 3.     INVARIANCE AND CONSERVATION LAWS

7. Invariance and covariance of equations and quantities ..................  59
    7.1. Coordinate transformations and Lagrange equations.  7.2. Scalar
    and invariant quantities.  Examples of invariant and non-invariant quantities.
    7.3. Covariance of Lagrange equations. Velocities and momenta belong to
   different spaces.*  7.4. Absolute, relative and transferred generalized velocity.

8. Mechanical similarity. Virial theorem..........................................  71
    8.1. Scale transformations.  8.2. Virial theorem.

9. Conserved quantities in mechanics.............................................  74
     9.1. Definition and number.  9.2.Conservation of energy. Generalized
      energy and total energy. Difference in names.  9.3. Conservation of the momentum.
     9.4. Conservation of the angular momentum.  9.5. Noether theorem. Cyclic
     coordinates.

10. Transformation of E, P, and M. Relativity principle ...................  84
      10.1. Translation.  10.2. Rotation.Group. Group of rotations.*  10.3. Motion with
      constant velocity.  10.4. Relativity principle.

 Summary.................................................................................... 91
 Problems.................................................................................... 93
 

Chapter 4.  ONE- AND TWO-DIMENSIONAL SYSTEMS

11. One-dimensional motion.........................................................   95
       11.1. Free particle.  11.2. Harmonic oscillator.  11.3. Nonstationary
       oscillator. 11.4. Pendulum. Non-cartesian coordinates.

12. Two-dimensional motion........................................................  103
       12.1. Two-dimensional oscillator.12.2. Two-dimensional pendulum.
       Motion on a sphere.

13. Motion in a central field.......................................................... 108
       13.1. Central field. 13.2. Consequences from the conservation of  E
       and  M. 13.3. Closed trajectories and fall at the center.  Symmetry of
       the trajectories.

14. Kepler problem...................................................................   112
       14.1. Coulomb field.  14.2. Conic cross-sections.  Cartesian coordinates.
       14.3. Kepler laws. Runge--Lentz vector.

Summary..................................................................................  119
Problems..................................................................................  120
 

Chapter 5.  SYSTEMS OF PARTICLES

15. Two particle system.............................................................  123
      15.1. Equations of motion in L-system.  15.2. Transition to C-system.
      15.3. Example.

16. Elastic collisions of particles...................................................  126
      16.1. Definition and conserved quantities. 16.2. Description in C-system.
       16.3. Transition to L-system.

17. Particle scattering.................................................................. 130
      17.1. Static center. Scattering cross-section.   17.2. Coulomb center.
      Routherford formula.   17.3. Mobile targets.   17.4 Distributions.

Summary....................................................................................136

Chapter 6.  OSCILLATIONS OF MECHANICAL SYSTEMS

18. Small oscillations ................................................................... 137
      18.1. s degrees of freedom. Lagrange function and equations.  18.2. Eigen
      frequencies. Normal coordinates (modes).  18.3. Connected pendulums.

19. Damped and forced oscillations .............................................. 144
      19.1. Damped and forced oscillator.  19.2. Damped oscillator. Dissipative
        function. Lagrange function for the damped oscillator.*  19.3. Forced oscillator.
      Resonance.

20. Nonlinear oscillations............................................................  150
      20.1. Anharmonic oscillations. 20.2. Examples of anharmonic oscillations.

Summary................................................................................   154
Problems...............................................................................    156
 

Chapter 7.  RIGID BODY MOTION

21. Kinetic energy and tensor of inertia......................................   157
      21.1. Rigid body. Angular velocity.  21.2. Kinetic energy. Tensor of inertia.
      21.3. Principal inertial moments and axes.  21.4. Transformation of inertia
      tensor under rotation and translation.

22. Equations of motion of the rigid body...................................  167
      22.1. Angular momentum of rigid body.  22.2. Free axes of rotation.
      22.3. Lagrange function and equations ofmotion.  22.4. Transformation
      of  M and  K  under translation.

23. Euler angles. Top precession.............................................    174
      23.1. Euler angles.  23.2. Top precession.  23.3. Symmetric top in the
      field of Earth attraction.

24. Motion in a non-inertial frame............................................   180
      A. Particle motion. Inertial and non-inertial frames. Transformation of coordinates
          and velocities. Lagrange function and equation of motion in K'. Vector form. Inertial
          forces.  Energy and  angular momentum transformation.
      B. Rigid body motion.

Summary.......................................................................................   192
Problems........................................................................................  194
 

Chapter 8.  HAMILTON APPROACH IN MECHANICS

25. Canonical equations................................................................... 195
      25.1. Hamilton function. Example:  N  particles system. Legendre transform. *
      25.2. Canonical equations.  Historical notes. *

26. Time-development and Poisson brackets....................................    204
       26.1. Time-derivative of mechanical quantities.  26.2. Poisson brackets.
       Examples of Poisson brackets.  Algebra, generated by  M_i .*  26.3. Poisson theorem.

27. Hamilton--Jacobi equation........................................................   208
       27.1. Action as a function of coordinates and time. 27.2. Hamilton--Jacobi
       equation. Necessary and sufficient condition.

28. Canonical transformations .........................................................   214
      28.1. Canonical transformations. 28.2. Canonicity criteria. Generating functions
      and Poisson brackets.  Reconstruction of canonical transformation. Four examples.
      28.3. Motion as a canonical transformation.  28.4. Coordinate and time scale
      transformations as canonical ones.

29. Inverse problem *  ...................................................................   235
      29.1. Direct and inverse problem. 29.2. Reduction to initial values.
      29.3. Linearization of Hamiltonian. Illustrative examples in solving  the inverse
      problem (free particle, harmonic oscillator).*

30. Phase space .............................................................................. 243
      30.1. Phase space.   Symplectic structure of phase space.*  30.2. Phase trajectories.
      Liouville theorem.  30.3. Universal invariants.  Volume form.  Phase flow.*

Summary........................................................................................  251
Problems......................................................................................... 253
 

Chapter 9.  RELATIVISTIC MECHANICS

31. Poincare--Einstein relativity principle...........................................  255
      31.1. Galilei and Lorentz transformations. 31.2.  Lorentz transformations.
      Lorentz group.*    31.3. Poincare--Einstein relativity principle. 31.4. Special
      Lorentz transformations.  General Lorentz transformations.*  31.5. Propertime
      and length. Velocity transformations.

32. Space of events......................................................................... 267
       32.1. Events.  32.2. Minkowski space.  32.3. Relativistic interval.
       Light cone. 32.4. Four-dimensional vectors and tensors.

33. Relativistic particle mechanics....................................................   272
      33.1. Least action principle and equation of motion. 33.2. Energy and
      momentum. Hamilton function. 33.3. Angular momentum. Minkowski
      equation.

34. Tachyons *  ............................................................................. 278
       34.1. Causality principle. 34.2. Lagrange function, energy and momentum
       of tachyon. 34.3. Switching principle. 34.4. Bradion-tachyon symmetry.*
       34.5. Historical notes.

Summary...................................................................................... 283
Problems.....................................................................................   285
 

 Appendix:  ELEMENTS OF VARIATIONAL CALCULUS

 A1. Functionals............................................................................. 286
 A2. Extremum of a functional........................................................   288
        Examples: Length functionals.
 A3. Action functionals...................................................................  294
 A4.  Dirac delta-function...............................................................  295

 References...................................................................................  299
 Notations ...................................................................................   301
 Alphabetical index ........................................................................ 303

 
 
 Back to Textbooks
 
 ---------------------------------------------------------------------
 
Miscellanea: Bulgarian alphabets