LIST OF PUBLICATIONS OF TCHAVDAR DIMITROV PALEV

  1. I. Patera, T.D. Palev, Theoretical interpretation of the experiments on the elastic $\pi-p$ scattering on the synchrophasotrone of JINR .
    1. Journ. Exper. and Theor. Physics 38 987 (1960) (In Russian)
    2. Soviet Physics JETP 11 710 (1960) (English translation)
  2. T.D. Palev, Real part of the amplitude of the elastic $K^\pm -p$ scattering at high energies (in Bulgarian).
              Izv. Fiz. Inst. ANEB XII 137 (1964)
  3. T.D. Palev, Determination of the parity of $\Lambda$ and $\Sigma$ hiperons (in Bulgarian).
              Izv. Fiz. Inst. ANEB XIV 45 (1966)
  4. R.P. Zaikov, K.V. Kademova, T.D. Palev, Mass formulae in the Pu group (in Russian).
              Izv. Fiz. Inst. ANEB XVI 149 (1967)
  5. C. Palev, M. Samiullah, O(3,1) Symmetry and the behaviour of the amplitudes for $\rho + \pi \rightarrow \rho + \pi$ at high energy.
    1. ICTP Int. Rep. 28/1967
    2. Izv. Fiz. Inst. ANEB XVIII 43 (1969)
  6. C. Palev, M. Samiullah, Homogeneous Lorenz group partial wave analysis and the asymptotic behaviour of the invariant amplitudes for $\rho + \pi \rightarrow \rho + \pi$ and A1 + $\pi \rightarrow$ A1 + $\pi$ processes at high energy.
    1. ICTP Int. Rep. 32/1967
    2. Zeitschr. Phys., 216 293 (1968)
  7. N.G. Antoniou, C. Palev, M. Samiullah, O(3,1) Symmetry and the high-energy reactions $N \bar N \rightarrow NY$.
    1. Preprint ICTP IC/67/76 (1967)
    2. N. Cim. 56 77 (1968)
  8. N.G. Antoniou, C. Palev, M. Samiullah, O(3,1) Symmetry and the forward Compton scattering of virtual photons at high energy.
    1. ICTP Int. Rep. 33/1967
    2. Nucl. Phys. B4 479 (1968)
  9. N.G. Antoniou, C. Palev, M. Samiullah, O(3,1) Symmetry and a parity invariant model.
              ICTP Int. Rep. 36/1967
  10. N.G. Antoniou, C. Palev, Forward dispersion repations and $\pi - \pi$ scattering length.
    1. Preprint ICTP IC/67/79 (1967)
    2. Phys. Lett. 26B 301 (1968)
  11. N.G. Antoniou, S.R. Komy, C.D. Palev, O(3,1) Symmetry and the high-energy reactions $\pi N \rightarrow \eta N^* (1236)$.
    1. Preprint ICTP IC/68/6 (1968)
    2. Nucl. Phys. B5 195 (1968)
  12. N.G. Antoniou, S.R. Komy, C.D. Palev, M. Samiullah, Lorentz-pole analysis of the high-energy reactions $ \pi N \rightarrow \omega N^* (1236)$.
    1. Preprint ICTP IC/68/7 (1968)
    2. N. Cim. 56A 437 (1968)
  13. N.G. Antoniou, S.R. Komy, C.D. Palev, M. Samiullah, Lorentz-pole model and polarization in the high-energy charge-exchange pion-nucleon scattering.
    1. Preprint ICTP IC/68/15 (1968)
    2. Phys. Rev. 175 1757 (1968)
  14. C.D. Palev, On the representations of Lie algebras in linear spaces.
    Preprint ICTP IC/68/23 (1968)
  15. C.D. Palev, Finite- and infinite-component fields and equations generated from the Dirac equation.
    1. Preprint ICTP IC/68/71 (1968)
    2. N. Cim. 62A 585 (1969)
  16. C.D. Palev, Realizations of Lie algebras as functions of Heisenberg-algebra generators. General theory and applications to finite- and infinite-component field equations.
              Ph. D. Thesis, Marburg (Lahn), Germany (1968)
  17. R.P. Zaikov, T.D. Palev, An example of an infinite-component local field with a mass spectrum .
              Preprint JINR P2-5305 (1970) (In Russian)
  18. T.D. Palev, Maximal simple Lie algebra constructed out of two pairs of Fermi operators.
    1. Preprint JINR P2-5267 (1970) (in Russian)
    2. Izv. Fiz. Inst. ANEB XXII 129 (1972) (in Bulgarian)
  19. T.D. Palev, Maximal simple Lie algebra constructed out of given pairs of Fermi operators.
              Preprint JINR P2-5303 (1970) (in Russian)
  20. K. Kademova,T.D. Palev, Lie algebras and quasifield operators.
              Int. J. Theor. Phys. 3 337 (1970)
  21. H.D. Doebner, T.D. Palev, Realizations of Lie algebras through rational functions of canonical variables.
    1. Int. Rep. ICTP IC/70/18 (1970)
    2. Acta Phys. Austriaca, Suppl. VII 597 (1970)
  22. T.D. Palev, Second-order realizations of Lie algebras with parafield operators.
              Compt. Rend. Acad. Bulg. Sci. 24 565 (1971)
  23. T.D. Palev, Extended ladder representations.
              Int. J. Theor. Phys. 4 93 (1971)
  24. T.D. Palev, On some algebraical properties of the para-Fermi operators and their representations.
              Acta Phys. Austriaca, Suppl. VIII 416 (1971)
  25. H.D. Doebner, T.D. Palev, On realizations of Lie algebras in factor spaces.
              Preprint ICTP IC/71/104 (1971)
  26. T.D. Palev, An isomorphism between the para-Fermi algebra and the algebra O(n,n+1).
              Int. J. Theor. Phys. 5 71 (1972)
  27. H.D. Doebner, T.D. Palev, The trace formula for realizations of Lie algebras.
              Compt. Rend. Acad. Bulg. Sci. 26 151 (1973)
  28. T.D. Palev, V. Petkova, Representations of the symplectic algebra in the space of all polynomials of the Heisenberg operators (in Russian).
              Izv. Fiz. Inst. ANEB XXIII 39(1973)
  29. T.D. Palev, An example of an application of parastatistics of non-integer order (in Russian).
              High energies and Elementary particles p.331 (Proceedings of a Symposium,
              Varna, 1974)
  30. T.D. Palev, Vacuum-like state analysis of the representations of the para-Fermi operators.
    1. Preprint TH.1653-CERN (1973)
    2. Ann. Inst. Henri Poincare, 23 49 (1975)
  31. T.D. Palev, The parastatistics and Lie algebraical methods used there.
    1. Symposium on New Mathematical Methods in Physics and Problems in General Relativity, Bonn 1973 (Proceedings, Edited by K. Bleuler and A. Reetz, University of Bonn)
    2. Preprint TH.1749-CERN (1973)
    3. Int. J. Theor. Phys. 10 229 (1974)
  32. C. Palev, On a realization of gl(n,R) in terms of rational functions of Bose operators.
              Communication JINR E2-8264 (1974)
  33. T.D. Palev, A3-weight multiplicity formula.
              Rep. Math. Phys. 7 257 (1975)
  34. T.D. Palev, Matrix subalgebras in the division ring generated from the Heisenberg operators.
              Bulg. J. Phys. II 179 (1975)
  35. T.D. Palev, Gauge transformations for para-fields from the current algebra (in Russian).
    1. Preprint JINR P2-9171 (1975)
    2. Bulg. J. Phys. III 3 (1976)
  36. T.D. Palev, Current algebra for parafielfs (in Russian).
              Bulg. J. Phys. III 109 (1976)
  37. T.D. Palev, Lie algebraical aspects of the quantum statistics.
              Habilitation Thesis (in Bulgarian):  part 1,   part 2,   Inst.Nuclear Research and Nucl.Energy, Sofia,(1977)
  38. T.D. Palev, Lie algebraical aspect of quantum statistics. Parafermi statistics.
    1. Preprint JINR E2-10258 (1977)
    2. Rep. Math. Phys. 14 315 (1978)
  39. T.D. Palev, Fixed order matrix elements of the para-Fermi operators.
    1. Preprint JINR E2-10259 (1977)
    2. Rep. Math. Phys. 14 313 (1978)
  40. T.D. Palev, On a certain type of second quantization.
              Compt. Rend. Acad. Bulg. Sci. 30 993 (1977)
  41. T.D. Palev, Lie algebraical aspects of quantum statistics. Unitary quantization (A-quantization).
    1. Preprint JINR E17-10550 (1977)
    2. hep-th/9705032
  42. T.D. Palev, Second quantization and particle (quark) confinement.
              Proceedings ICCR, 11 546 (1977), Plovdiv, Bulgaria
  43. T.D. Palev, On a certain realization of the A-statistics (in Russian).
              Preprint JINR P2-11943 (1978)
  44. T.D. Palev, Lie algebraical approach to the second quantization.
              Proc. III School of Elementary Particles and High Energy Physics, Primorsko
              (1978), p.418
  45. A.Ch. Ganchev and T.D. Palev, Para-Bose quantization and Lie superalgebras (in Bulgarian).
              Proc. IV Nat. Conf. of the Young Physicists (1978), p.1
  46. A.Ch. Ganchev and T.D. Palev, On a certain relation between the Bose statistics and the A-statistics .
              Proc. IV Nat. Conf. of the Young Physicists (1978), p.3 (in Bulgarian)
  47. T.D. Palev, Lie-superalgebraical approach to the second quantization.
              Czech. Journ. Phys. B29 91 (1979)
  48. T.D. Palev, A causal A-statistics.
              Compt. Rend. Acad. Bulg. Sci. 32 159 (1979)
  49. T.D. Palev, A causal A-statistics. I.General results.
    1. Preprint JINR E2-11904 (1978)
    2. Rep. Math. Phys. 18, 117 (1980)
  50. T.D. Palev, A causal A-statistics. II. Lowest order representation.
    1. Preprint JINR E2-11905 (1978)
    2. Rep. Math. Phys. 18 129 (1980)
  51. A.Ch. Ganchev, T.D. Palev, A Lie superalgebraical analysis of the para-Bose statistics.
    1. Preprint JINR P2-11941 (1978) (in Russian)
    2. Journ. Math. Phys. 21 797 (1980)
  52. T.D. Palev, Lie superalgebraical aspects of quantum statistics.
              Communication JINR E2-11929 (1978)
  53. T.D. Palev, On a certain Fock type representations of the Lie superalgebra A(0,1).
    1. Preprint JINR P2-11930 (1978)
    2. Int. J. Theor. Phys. 17 985 (1978)
  54. T.D. Palev, A-superquantization.
              Communication JINR E2-11942 (1978)
  55. T.D. Palev, The trace formula for realizations of Lie algebras with A-operators.
              Preprint ICTP IC/79/168 (1979)
  56. T.D. Palev, Fock space representations of the Lie superalgebra A(0,n).
              Journ. Math. Phys. 21 1293 (1980)
  57. T.D. Palev, S-matrix for interacting A-fields.
              Journ. Math. Phys. 21 2560 (1980)
  58. T.D. Palev, A trace formula for realizations of Lie superalgebras with creation and annihilation operators.
              Compt. Rend. Acad. Bulg. Sci. 33 1195 (1980)
  59. T.D. Palev, On a class of non-typical representations of the Lie superalgebra A(1,0).
              Godishnik VUS 16 103 (1981)
  60. T.D. Palev, Canonical realizations of Lie superalgebras. Ladder representations of the Lie superalgebra A(m,n).
              Journ. Math. Phys. 22 2127 (1981)
  61. T.D. Palev, Noncanonical quantization of two particles interacting via harmonic potential.
              Communication JINR E2-81-419 (1981)
  62. T.D. Palev, On a certain possibility for a non-canonical quantization of mechanical systems (in Bulgarian).
              Proceedings of the Jubilee session of VPI, Shumen, 1981
  63. T.D. Palev, Para-Bose and para-Fermi operators as generators of orthosymplectic Lie superalgebras.
    1. ICTP Int.Rep. IC/79/167
    2. Journ. Math. Phys. 23 1100 (1982)
  64. T.D. Palev, Dynamical quantization.
              Conference on Differential Geometric Methods in Theoretical Physics ICTP,
              Trieste 30.06-3.07.1981, p.109 (Ed. G. Denardo, H.D. Doebner, World
              Scientific Pub. Co Pte, 1983)
  65. T.D. Palev, On dynamical quantization.
              Czech. Journ. Phys. B32 680 (1982)
  66. T.D. Palev, O.Ts. Stoytchev, Finite-dimensional induced representations of the Lie superalgebra sl(1,n).
              Compt. Rend. Acad. Bulg. Sci. 35 733 (1982)
  67. T.D. Palev, O.Ts. Stoytchev, Typical representations of the Lie superalgebra sl(1,n).
              Communications JINR E5-82-54 (1982)
  68. T.D. Palev, Wigner approach to quantization. Noncanonical quantization of two particles interacting via a harmonic potential.
              Journ. Math. Phys. 23 1778 (1982)
  69. T.D. Palev, Irreducible finite-dimensional representations of the Lie superalgebra sl(1,3).
              Proc. XIII Conf. Differential Geometric Methods in Theor. Phys., Shumen, p.107
              (Ed. H.D. Doebner, T.D. Palev, World Scientific Pub. Co Pte, 1984)
  70. T.D. Palev, Finite-dimensional representations of the Lie superalgebra sl(1,3) in a Gel'fand-Zetlin basis. I.Typical representations.
              Journ. Math. Phys. 26 1640 (1985)
  71. T.D. Palev, Finite-dimensional representations of the Lie superalgebra sl(1,3) in a Gel'fand-Zetlin basis.
    1. Preprint ICTP IC/85/130 (1985)
    2. Journ. Math. Phys. 27 1994 (1986)
  72. A.H. Kamupingene, T.D. Palev, Irreducible finite-dimensional representations of the Lie superalgebra sl(1,2) in a Gel'fand-Zetlin basis.
    1. Preprint ICTP IC/85/146 (1985)
    2. Bulg. J. Phys. 14 124 (1987)
  73. A.H. Kamupingene, T.D. Palev, S.P. Tsaneva, Wigner quantum systems. Two particles interacting via a harmonic potential. I. Two-dimensional case.
    1. Preprint ICTP IC/85/169 (1985)
    2. Journ. Math. Phys. 27 2067 (1986)
  74. T.D. Palev, Finite-dimensional representations of the Lie superalgebra sl(1,3) in a Gel'fand-Zetlin basis. II.Nontypical representations.
              Journ. Math. Phys. 28 272 (1987)
  75. T.D. Palev, Lie superalgebraical quantization.
              Jubilee collection "70 Years of Acad. Christo Christov"
  76. T.D. Palev, On the representations of the basic Lie superalgebras. Gel'fand-Zetlin basis for sl(1,n).
              Symmetries in Sciences II p.447 (Ed.B.Gruber, R.Lenczewski, Plenum Press,
              1986)
  77. T.D. Palev, Finite-dimensional irreducible representations of the special linear Lie superalgebra sl(1,n).
              Compt. Rend. Acad. Bulg. Sci. 40, 33 (1987)
  78. T.D. Palev, Irreducible finite-dimensional representations of the Lie superalgebras gl(n,1) in a Gel'fand-Zetlin basis.
    1. Preprint JINR P5-86-783 (1986)
    2. Funkt. Anal. Prilozh. 21 No 3, 85 (1987) (in Russian)
    3. Funct. Anal. Appl. 21 245 (1987) (English translation)
  79. T.D. Palev, Finite-dimensional representations of the special linear Lie superalgebra sl(1,n). I.Typical representations.
              Journ. Math. Phys. 28 2280 (1987)
  80. T.D. Palev, Essentially irreducible representations of the Lie superalgebras sl(n/1) and sl(n/2).
              Lect. Notes in Physics 313 p.161 (Ed. by H.D.Doebner, J.D.Hennig and
              T.D. Palev, Springer-Verlag, 1988). Proceedings of the Colloquim on Group
              Theoretical Methods in Physics, Varna (1986)
  81. T.D. Palev, Finite-dimensional representations of the special linear Lie superalgebra sl(1,n). II.Nontypical representations.
              Journ. Math. Phys. 29 2589 (1988)
  82. T.D. Palev, Irreducible finite-dimensional representationsof the Lie superalgebra gl(n/1) in a Gel'fand-Zetlin basis.
    1. Preprint ICTP, IC/88/207 (1988)
    2. Journ. Math. Phys. 30 1433 (1989)
  83. T.D. Palev, Essentially typical representations of the Lie superalgebras gl(n/m) in a Gel'fand-Zetlin basis .
    1. Preprint JINR P5-88-169 (1988)
    2. Funkt. Anal. Prilozh. 23 No 2, 69 (1989) (in Russian)
    3. Funct. Anal. Appl. 23 141 (1989) (English translation)
  84. A.H. Kamupingene, N.A. Ki, T.D. Palev, Finite-dimensional representations of the Lie superalgebra gl(2/2) in a gl(2) $\oplus$ gl(2) basis. I. Typical representations.
              Journ. Math. Phys. 30 553 (1989)
  85. T.D. Palev, Highest weight representations of the Lie algebra $gl\infty$ in a Gel'fand-Zetlin basis.
              Symmetries in Sciences III p.567 (Ed.B.Gruber and F.Iachello, 1989 Plenum
              Press, New York). Proceedings of the symposium, held July 25-28, 1988 in
              Schloss Hofen, Lochau, Austria
  86. T.D. Palev, Representations with a highest weight of the Lie algebra $gl\infty$.
    1. Preprint JINR P5-88-875 (1988)(in Russian)
    2. Funkt. Anal. Prilozh. 24 No 1, 82 (1990) (in Russian)
    3. Funct. Anal. Appl. 24 72 (1990) (English translation)
  87. T.D. Palev, Highest weight irreducible unitary representations of the Lie algebras of infinite matrices. I. The algebra $gl(\infty)$.
              Journ. Math. Phys. 31 579 (1990)
  88. T.D. Palev, N.I. Stoilova, Finite-dimensional representations of the Lie superalgebra gl(2/2) in a gl(2) $\oplus$ gl(2) basis. II. Nontypical representations.
              Journ. Math. Phys. 31 953 (1990)
  89. T.D. Palev, Representations with a highest weight of the Lie algebra $a\infty$.
    1. Funkt. Anal. Prilozh. 24 No 3, 88 (1990) (in Russian)
    2. Funct. Anal. Appl. 24 250 (1990) (English translation)
  90. T.D. Palev, Highest weight irreducible unitarizable representations of the Lie algebras of infinite matrices. I.The algebra $A\infty$ .
              Journ. Math. Phys. 31 1078 (1990)
  91. E. Celeghini, T.D. Palev, M. Tarlini, The quantum superalgebra B(0/1) and q-deformed creation and annihilation operators.
    1. Preprint YITP/K-865, Kyoto (1990)
    2. Mod. Phys. Lett. B5 187 (1991)
  92. T.D. Palev, V.N. Tolstoy, Finite-dimensional irreducible representations of the quantum superalgebra Uq[gl(n/1)].
    1. Preprint YITP/K-879, Kyoto (1990)
    2. Lect. Notes in Physics 382, p.177 (Edited by V.V. Dodonov and V.I. Manko, Springer-Verlag,1991).
      Proc. XVIII Int. Colloquium on Group Theoretical Methods in Physics, Moscow (1990))
  93. T.D. Palev, Lie superalgebras, infinite-dimensional algebras and quantum statistics.
    1. Preprint YITP/K-888, Kyoto (1990)
    2. Rep. Math. Phys. 31 241 (1992) (No 3)
  94. T.D. Palev, V.N. Tolstoy, Finite-dimensional irreducible representations of the quantum superalgebra Uq[gl(n/1)].
    1. Preprint YITP/K-887, Kyoto (1990)
    2. Comm. Math. Phys. 141 549 (1991)
  95. T.D. Palev, N.I. Stoilova, Osp(3/2) noncanonical quantum oscillator.
              Sakharov Memorial Lectures in Physics (Eds. L. V. Kelsysh and V. Ya.
              Feinberg, Nove Sci. Publ. New York) Proceedings of the First International
              Sakharov Conference on Physics, Moscow, May 27-31, 1991
  96. T.D. Palev, N.I. Stoilova, Classification of all three-dimensional noncanonical quantum oscillators generating classical Lie superalgebras,
              Classical and Quantum Systems - Foundations and Symmetries, p.318
              (Ed. H.D. Doebner, W. Schehrer, F. Schroeck, Jr.; World Scientific, Singapore,
              1993). Proceedings of the II International Wigner Symposium, July 16-20,
              1991, Goslar, Germany).
  97. N.A. Ky, T.D. Palev, N.I. Stoilova, Transformations of some induced osp(3/2) modules in an so(3) $\oplus$ sp(2) basis.
    1. Preprint ICTP Trieste IC/91/192
    2. Journ. Math. Phys. 33 1841 (1992)
  98. T.D. Palev, N.I. Stoilova, Wigner Quantum Systems: Noncanonical osp(3/2) Oscillator.
              Preprint Concordia University 1/92, Montreal (1992)
  99. T.D. Palev, A Quanutm osp(3/2) Superalgebra Freely Generated by Deformed Para Operators and its Morphism onto a Wq(1/1) Clfford-Weyl Algebra.
    1. Preprint Concordia University 5/92, Montreal (1992)
    2. Journ. Math. Phys. 34, 4872 (1993)
  100. T.D. Palev, N.I. Stoilova, On a Possible Algebra Morpism of Uq[osp(1/2n)] onto the Deformed Oscillator Algebra Wq(n).
    1. Symmetries in Sciences VI (Ed.B.Gruber, Plenum Press, New York). Proceedings of the symposium held August 2-7, 1992 in Kloster Mehrerau, Breegenz, Austria)
    2. Preprint ICTP Trieste, IC/93/54 (1993)
    3. hep-th/9303142
    4. Lett. Math. Phys. 28 187 (1993)
  101. T.D. Palev, Oscillator Generators for Quantum Algebras. The Algebra Uq[oso(3/2)].
              Proceedings of the XIX ICGTMP. Anales de Fisica, Monograf'ias. Vol. 1,
              p. 165. M. O. and J. M. G. (Eds.). CIEMAT/RSEF, Madrid (1993)
  102. T.D. Palev, A Superalgebra Morpism of Uq[osp(1/2n)] onto the Deformed Oscillator
    Algebra W (n).
    1. Preprint TWI-93-17, Dept. of Applied Mathematics and Computer Science, University of Ghent (1993)
    2. hep-th/9305071
    3. Lett. Math. Phys. 28 321 (1993)
  103. T.D. Palev and N.I. Stoilova, Finite-Dimensional Representations of the Quantum Superalgebra Uq[gl(3/2)] in a Reduced Uq[gl(3/2)] $\supset$ Uq[gl(3/1)] $\supset$ Uq[gl(3)] Basis.
    1. Preprint TWI-93-21, Dept. of Applied Mathematics and Computer Science, University of Ghent (1993)
    2. Preprint ICTP, Trieste, IC/93/123 (1993)
    3. hep-th/9305136
    4. J. Phys. A 26 5867 (1993)
  104. T.D. Palev, Quantization of Uq[osp(1/2n)] with deformed para-Bose operators,
    1. Preprint TWI-93-24, Dept. of Applied Mathematics and Computer Science, University of Ghent (1993)
    2. hep-th/9306016
    3. J. Phys. A 26 L1111 (1993)
  105. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, Finite-Dimensional Representations of the Quantum Superalgebra Uq[gl(n/m)] and related q-identities.
    1. Preprint TWI-93-30, Dept. of Applied Mathematics and Computer Science, University of Ghent (1993)
    2. Preprint ICTP, Trieste, IC/93/157 (1993)
    3. hep-th/9306149
    4. Comm. Math. Phys. 166 367-378 (1994)
  106. T.D. Palev, Is it possible to extend the deformed Weyl algebra Wq(n) to a Hopf algebra?
    1. Preprint ICTP, Trieste IC/93/163 (1993)
    2. hep-th/9307032
  107. T.D. Palev and N.I. Stoilova, Wigner quantum oscillators,
    1. Preprint ICTP, Trieste, IC/93/190 (1993)
    2. hep-th/9307102
    3. J. Phys. A 27 977 (1994)
  108. T.D. Palev, Quantization of Uq[so(2n+1)] with deformed para-Fermi operators
    1. Preprint INRNE-TH-93/7
    2. hep-th/9311163
    3. Lett. Math. Phys. 31 151 (1994)
  109. T.D. Palev and N.I. Stoilova, Wigner quantum oscillators. Osp(3/2) oscillators.
    1. Preprint INRNE-TH-94/3 (1994)
    2. hep-th/9405125
    3. Preprint ICTP, Trieste, IC/94/259 (1994)
    4. J. Phys. A 27 7387 (1994)
  110. T.D. Palev, Algebraic structure of the Greens's ansatz and its q-deformed analogue.
    1. Preprint INRNE-TH-94/4 (1994)
    2. hep-th/9406066
    3. Preprint ICTP, Trieste, IC/94/260 (1994)
    4. J. Phys. A 27 7373 (1994)
  111. T.D. Palev, Quantization of the Lie algebra so(2n+1) and of the Lie superalgebra osp(1/2n) with preoscillator generators.
    1. Preprint TWI-94-29, Dept. of Applied Math. and Computer Science, University of Ghent (1994)
    2. hep-th/9412060
    3. J. Group Theor. Phys. 3 1 (1995)
  112. T.D. Palev and J. Van der Jeugt, The quantum superalgebra Uq[osp(1/2n)]: deformed para-Bose operators and root of unity representations.
    1. Preprint TWI-95-1, Dept. of Applied Math. and Computer Science, University of Ghent (1995)
    2. q-alg/9501020
    3. J. Phys. A 28 2605 (1995)
  113. T.D. Palev and N.I. Stoilova, Wigner quantum oscillators.
              Proceedings of the Yamada Conference XL and XX ICGTMP, Toyanoka,
              Japan, July 4-9, 1994 (Ed. A. Arima, T. Eguchi and N. Nakanishi, World
              Scientific Pub. Co Pte, 1995), p. 386
  114. T.D. Palev and N.I. Stoilova, Unitarizable representations of the deformed para-Bose superalgebra Uq[osp(1/2)] at roots of 1.
    1. Preprint ICTP, Trieste, IC/95/97 (1995)
    2. q-alg/9507026
    3. J. Phys. A 28 7275 (1995)
  115. T.D. Palev and N.I. Stoilova, New solutions of the Yang-Baxter equations based on root of 1 representations of the para-Bose superalgebra Uq[osp(1/2)].
    1. Preprint ICTP, Trieste, IC/95/190 (1995)
    2. q-alg/9507027
    3. J. Phys. A 29 709 (1996)
  116. T.D. Palev, A description of the Lie superalgebra osp(2n+1/2m) via Green generators.
    1. Preprint GCR-95/11/03 (1995) of the University Piere and Marie Curie, Paris
    2. Preprint INRNE-TH-96/1 (1996)
    3. J. Phys. A 29 L171 (1996)
  117. T.D. Palev and N.I. Stoilova, Many-body Wigner quantum systems.
    1. Preprint ICTP, Trieste, IC/96/82 (1996)
    2. HEP-TH-9606011
    3. Journ. Math. Phys. 38 2506-2523 (1997)
  118. T.D. Palev, An analogue of Holstein-Primakoff and Dyson realizations for Lie superalgebras. The Lie superalgebras sl(1/n).
    1. Preprint ICTP, Trieste, IC/96/91 (1996)
    2. Preprint SISSA, Trieste, SISSA-93/96/FM (1996)
    3. hep-th/9607221
    4. Journ. Nonlin. Math. Phys. 4 287-292 (1997)
  119. T.D. Palev, A Holstein-Primakoff and Dyson realizations for the Lie superalgebra gl(m/n+1).
    1. Preprint ICTP, Trieste, IC/96/101 (1996)
    2. Preprint SISSA, Trieste, SISSA-97/96/FM (1996)
    3. hep-th/9607222
    4. J. Phys. A 30 8273-8278 (1997)
  120. T.D. Palev, A description of the quantum superalgebra Uq[osp(2n+1/2m)] via Green generators.
    1. Preprint ICTP, Trieste, IC/96/127 (1996)
    2. Preprint SISSA, Trieste, SISSA-119/96/FM (1996)
    3. "Quantum Group Symposium at Group21" 235-244 (Proceedings of the Quantum Group Symposium at the XXI International Colloquium on Group Theoretical Methods in Physics, Goslar, 1996), eds. H.-D. Doebner and V.K. Dobrev, (Heron Press, Sofia, 1997; ISBN 954-590-027-5)
    4. q-alg/9607030
  121. T.D. Palev and P. Parashar, An alternative to the Chevalley description of U[sl(n+1)] and Uq[sl(n+1)].
    1. Preprint Sissa, Trieste, SISSA-123/96/FM (1996)
    2. q-alg/9608024
    3. Lett. Math. Phys. 43 7-19 (1998)
  122. T.D. Palev and N.I. Stoilova, Representations of the quantum algebra Uq[gl($\infty$)].
              Preprint University of Brisbane UQMATH-arc-9620 (1996)
  123. T.D. Palev and N.I. Stoilova, Highest weight representations of the quantum algebra Uh(gl$\infty$)
    1. Preprint ICTP, Trieste, IC/97/29 (1997)
    2. q-alg/9704001
    3. J. Phys. A 30 L699-L705 (1997)
  124. T.D. Palev and N.I. Stoilova, Highest weight irreducible representations of the quantum algebra Uh(A$\infty$).
    1. Preprint University of Brisbane UQMATH-arc-9703 (1997)
    2. ICTP Preprint IC/97/92 (1997)
    3. q-alg/9709004
    4. math.QA/9807197 - an extended version
    5. Preprint University of Rochester UR-1535 (1998)
    6. Journ. Math. Phys. 39 5832-5849 (1998)
  125. T.D. Palev, A q-deformation of the parastatistics and an alternative to the Chevalley description of Uq[osp(2n+1/2m)].
    1. ICTP Preprint IC/97/110 (1997)
    2. q-alg/9709003
    3. Comm. Math. Phys. 196 429-443 (1998)
  126. T.D. Palev and N.I. Stoilova, Representations of the quantum algebra Uh(A$\infty$).
              "Lie Theory and Its Applications in Physics II" 338-349
              (Proceedings of a Workshop, Clausthal-Zellerfeld, August 17-20, 1997),
              Eds. H.-D. Doebner, V.K. Dobrev and J. Hilgert, World Sci, Singapore,
              1998; ISBN 981-02-3539-9
  127. T.D. Palev, A Holstein-Primakoff and a Dyson realization for the quantum algebra Uq[sl(n+1)].
    1. Preprint University of Rochester UR-1522 (1998)
    2. math.QA/9804017
    3. J. Phys. A 31 5145-5148 (1998)
  128. T.D. Palev, A Dyson and a Holstein-Primakoff realization for the quantum superalgebra Uq[gl(n/m)].
    1. Preprint University of Rochester UR-1525 (1998)
    2. math.QA/9804062
    3. Mod. Phys. Lett. A 14 299-306 (1999)
  129. T.D. Palev and N.I. Stoilova, Highest weight irreducible representations of the Lie superalgebra $gl(1|\infty)$.
    1. Preprint University of Rochester UR-1530 (1998)
    2. Abdus Salam ICTP Preprint IC/98/122 (1998)
    3. math-ph/9809024
    4. Journ. Math. Phys. 40 1574-1594 (1999)
  130. T.D. Palev and N.I. Stoilova, A description of the quantum superalgebra Uq[sl(n+1|m)] via creation and annihilation generators.
    1. Abdus Salam ICTP Preprint IC/98/171 (1998)
    2. math.QA/9811141
    3. J. Phys. A 32 1053-1064 (1999) Corrigendum J. Phys. A 32 4322 (1999)
  131. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, A new description of the quantum superalgebra Uq[sl(n+1|m)] and related Fock representations.
    1. ``Quantum Theory and Symmetries'', (Proceedings of the International Symposium on Quantum Theory and Symmetries, July, 18-22, 1999, Goslar, Germany),
      Eds. H.-D. Doebner, V.K. Dobrev, J.-D. Hennig and W. Lucke, World Sci, Singapore
    2. math.QA/9911169
  132. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, Fock representations of the superalgebra sl(n+1|m), its quantum analogue Uq[sl(n+1|m)] and related quantum statistics.
    1. Preprint ICTP, Trieste IC/99/181
    2. math-ph/0002041
    3. J. Phys. A 33 2545-2553 (2000)
  133. T.D. Palev and J. Van der Jeugt, Fock representations of the Lie superalgebra q(n+1).
    1. math.QA/9911176
    2. J. Phys. A 33 2527-2544 (2000)
  134. T.D. Palev and J. Van der Jeugt, Quasiboson representations of sl(n+1) and generalized quantum statistics.
    1. hep-th/0009108
    2. Proceedings of the ICGTM, Dubna, June, 2000, Vol. I, pp.91-98 (ISBN 5-85165-695-6)
  135. T.D. Palev and J. Van der Jeugt, Jacobson generators, Fock representations and statistics of sl(n+1).
    1. hep-th/0010107
    2. Preprint ICTP IC/2000/158 (2000)
    3. Journ. Math. Phys. 43 3850-3873 (2002)
  136. A. Jellal, T.D. Palev and J. Van der Jeugt, Macroscopic properties of A-statistics.
    1. J. Phys. A 34 10179-10200 (2001)
    2. hep-th/0110276
  137. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, Jacobson generators of the quantum superalgebra Uq[sl(n+1|m)] and Fock representations.
    1. Preprint RGD/05/01, Technical University of Clausthal
    2. math.QA/0111289
    3. Journ. Math. Phys. 43 1646-1663 (2002)
  138. T.D. Palev, N.I. Stoilova, Wigner Quantum Systems (Lie superalgebraic approach).
    1. Preprint RGD/06/01, Technical University of Clausthal
    2. Rep. Math. Phys. 49 395-404 (2002)
    3. hep-th/0111011
  139. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, Jacobson generators of (quantum) sl(n+1|m). Related statistics.
    1. Preprint RGD/07/01, Technical University of Clausthal
    2. Proceedings of the Fourth International Conference ``Symmetry in Nonlinear Mathematical Physics'', July 9-15, 2001, Kiev, Ukraine.
      In Proceedings of Institute of Mathematics of NAS of Ukraine, 43 , 478-485 (2002), Eds. A.G. Nikitin, V.M. Boyko and R.O. Popovych, ISBN 966-02-2488-5
  140. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, Deformed Jacobson generators of the algebra Uq[sl(n+1) and their Fock representations.
    1. Preprint RGD/08/01, Technical University of Clausthal
    2. Proceedings of the 2nd International Symposium ``Quantum theory and Symmetries'', 18-21 July 2001, Krakow, Poland, pp. 521-526, Eds (Eds E. Kapuscik and A. Horzela, World Scientific, ISBN 981-02-4887-3)
  141. T.D. Palev and J. Van der Jeugt, Microscopic properties of A-statistics and A-superstatistics.
    "Group 24: Physical and Mathematical Aspects of Symmetries"; Institute of Physics, Conference Series Number 173 (Ed. J.-P. Gazeau, R.Kerner, J.-P. Antoine, S. Metens and J.-Y. Thibon, ISBN 0 7503 0933 4), p. 421-424
  142. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt, The noncommutative and discrete space structure of the sl(1|3) Wigner quantum oscillator.
    1. Preprint ICTP IC/2002/70 (2002)
    2. hep-th/0210164
    3. J. Phys. A 36 4337-4362 (2003)
  143. H.D. Doebner, T.D. Palev, N.I. Stoilova, On deformed Clifford Clq(n|m) and orthosymplectic Uq[osp(2n+1|2m)] superalgebras and their root of unity representation.
    1. ICTP Preprint IC/2002/47 (2002)
    2. J. Phys. A 35 9367-9380 (2002)
    3. math.QA/0210340
  144. T.D. Palev, N.I. Stoilova and J. Van der Jeugt, Microscopic and macroscopic properties of A-superstatistics.
    1. J. Phys. A 36 7093-7112 (2003)
    2. math-ph/0306032
  145. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt, A noncommutative n-particle 3D Wigner quantum oscillator.
    1. hep-th/0310016
    2. J. Phys. A 36 11999 - 12019 (2003)
  146. T.D. Palev, N.I. Stoilova, Wigner quantum systems, Concise Encyclopedia of Supersymmetry.
    (Editors J. Bagger, S. Duplij, W. Siegel, Kluwer Acad. Pub., Dordrecht, ISBN 1-4020-1338-8), 358-360
  147. R.C. King, T.D. Palev, N.I. Stoilova and J. Van der Jeugt, On the N-particle Wigner quantum oscillator: non-commutative coordinates and particle localization.
    (to appear in the proceedings of the 5th International Workshop "Lie Theory and Its Applications in Physics" (Editors H.D. Doebner and V.K. Dobrev, 16 - 22 June 2003, Varna, Bulgaria)